Instability in Two-Sided Thermocapillary-Buoyancy Convection with Interfacial Phase Change
Guo-Feng Xu1,2 , Qiu-Sheng Liu1,2** , Jun Qin1,2 , Zhi-Qiang Zhu1
1 Institute of Mechanics, Chinese Academy of Sciences, Beijing 1001902 University of Chinese Academy of Sciences, Beijing 100049
Abstract :A new model of two-phase thermocapillary-buoyancy convection with phase change at gas-liquid interface in an enclosed cavity subjected to a horizontal temperature gradient is proposed, rather than the previous one-sided model without phase change. We study the onset of multicellular convection and two modes of convective instability, and find four different flow regimes. Their transition map is compared with the non-phase-change condition. Our numerical results show the stabilizing effect of interfacial phase change on the thermocapillary-buoyancy convection.
收稿日期: 2019-08-14
出版日期: 2019-12-23
:
47.55.Ca
(Gas/liquid flows)
47.55.dm
(Thermocapillary effects)
47.20.Hw
(Morphological instability; phase changes)
47.55.P-
(Buoyancy-driven flows; convection)
[1] Li Y R, Zhang L, Zhang L and Yu J J 2018 Int. J. Thermal Sci. 130 168 [2] Chen P C and Lin W K 2001 Appl. Therm. Eng. 21 1739 [3] Abe Y, Iwaski A and Tanaka K 2005 Microgravity Sci. Technol. 16 148 [4] Smith M K and Davis S H 1983 J. Fluid Mech. 132 119 [5] Riley R J and Neitzel G P 1998 J. Fluid Mech. 359 143 [6] Jiang H, Duan L and Kang Q 2017 Chin. Phys. B 26 114703 [7] Wang J, Duan L and Kang Q 2017 Chin. Phys. Lett. 34 074703 [8] Burguete J, Mukolobwiez N, Daviaud F, Garnier N and Chiffaudel A 2001 Phys. Fluids 13 2773 [9] Shevtsova V M, Nepomnyashchy A A and Legros J C 2003 Phys. Rev. E 67 066308 [10] Zhou X M and Huang H L 2012 Chin. Phys. Lett. 29 074704 [11] Li Y R, Zhang S and Zhang L 2019 Int. J. Thermal Sci. 145 105983 [12] Zhu Z Q and Liu Q S 2010 Chin. Sci. Bull. 55 233 [13] Li Y, Grigoriev R and Yoda M 2014 Phys. Fluids 26 122112 [14] Kazemi M A, Nobes D S and Elliott J A W 2017 Langmuir 33 4578 [15] Li J J, Zhang L, Zhang L, Li Y R and Quan X J 2019 Int. J. Heat Mass Transfer 140 828 [16] Liu R, Liu Q S and Hu W R 2005 Chin. Phys. Lett. 22 402 [17] Ji Y, Liu Q S and Liu R 2008 Chin. Phys. Lett. 25 608 [18] Grigoriev R O and Qin T 2018 J. Fluid Mech. 838 248 [19] Qin T, Tuković Ž and Grigoriev R O 2014 Int. J. Heat Mass Transfer 75 284 [20] Qin T, Tuković Ž and Grigoriev R O 2015 Int. J. Heat Mass Transfer 80 38 [21] Qin T and Grigoriev R O 2018 Int. J. Heat Mass Transfer 127 308 [22] Liu Q S, Chen G and Roux B 1993 Int. J. Heat Mass Transfer 36 101
[1]
. [J]. 中国物理快报, 2017, 34(8): 84701-.
[2]
. [J]. 中国物理快报, 2016, 33(11): 116401-116401.
[3]
. [J]. 中国物理快报, 2014, 31(12): 120501-120501.
[4]
. [J]. 中国物理快报, 2014, 31(04): 44701-044701.
[5]
. [J]. 中国物理快报, 2013, 30(9): 90501-090501.
[6]
. [J]. 中国物理快报, 2013, 30(5): 50501-050501.
[7]
. [J]. 中国物理快报, 2013, 30(1): 14701-014701.
[8]
JI Bin, LUO Xian-Wu, WU Yu-Lin, XU Hong-Yuan. Unsteady Cavitating Flow around a Hydrofoil Simulated Using the Partially-Averaged Navier–Stokes Model [J]. 中国物理快报, 2012, 29(7): 76401-076401.
[9]
Hagar Alm El-Din, ZHANG Yu-Sheng, Medhat Elkelawy. A Computational Study of Cavitation Model Validity Using a New Quantitative Criterion [J]. 中国物理快报, 2012, 29(6): 64703-064703.
[10]
TAN Lei;CAO Shu-Liang**;WANG Yu-Ming;ZHU Bao-Shan. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate [J]. 中国物理快报, 2012, 29(1): 14702-014702.
[11]
LUO Xian-Wu**;JI Bin;ZHANG Yao;XU Hong-Yuan. Cavitating Flow over a Mini Hydrofoil [J]. 中国物理快报, 2012, 29(1): 16401-016401.
[12]
HUANG Biao;WANG Guo-Yu**
. Evaluation of a Filter-Based Model for Computations of Cavitating Flows [J]. 中国物理快报, 2011, 28(2): 26401-026401.
[13]
JI Bin;LUO Xian-Wu;ZHANG Yao;RAN Hong-Juan;XU Hong-Yuan;WU Yu-Lin. A Three-Component Model Suitable for Natural and Ventilated Cavitation [J]. 中国物理快报, 2010, 27(9): 96401-096401.
[14]
ZHANG Yao;LUO Xian-Wu;JI Bin;LIU Shu-Hong;WU Yu-Lin;XU Hong-Yuan. A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures [J]. 中国物理快报, 2010, 27(1): 16401-016401.
[15]
LI Zhang-Guo;LIU Qiu-Sheng;LIU Rong;HU Wei;DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment [J]. 中国物理快报, 2009, 26(11): 114701-114701.