1College of Telecommunication & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210000 2School of Physical Science and Technology, Lanzhou University, Lanzhou 730000
Abstract:We propose a diamond-based micron-scale sensor and perform high-resolution $B$-field imaging of the near-field distribution of coplanar waveguides. The sensor consists of diamond crystals attached to the tip of a tapered fiber with a physical size on the order of submicron. The amplitude of the $B$-field component $B$ is obtained by measuring the Rabi oscillation frequency. The result of Rabi sequence is fitted with a decayed sinusoidal. We apply the modulation-locking technique that demonstrates the vector-resolved field mapping of the micromachine coplanar waveguide structure (CPW). $B$-field line scan was performed on the CPW with a scan step size of 1.25 μm. To demonstrate vector resolved rf field sensing, a full field line scan acts (was performed) along four NV axes at a height of 50 μm above the device surface. The simulations are compared with the experimental results by vector-resolved measurement. This technique allows the measurement of weak microwave signals with a minimum resolvable modulation depth of 20 ppm. The sensor will have great interest in micron-scale resolved microwave $B$-field measurements, such as electromagnetic compatibility testing of microwave integrated circuits and characterization of integrated microwave components.
Yamazaki E, Park H, Wakana S, Kishi M and Tsuchiya M 2002 International Topical Meeting on Microwave Photonics (Awaji, Japan 5–8 November 2002) (unpublished)
Neumann P, Kolesov R, Jacques V, Beck J, Tisler J, Batalov A, Rogers L, Manson N B, Balasubramanian G, Jelezko F and Wrachtrup J 2009 New J. Phys.11 013017