A High-Q Quartz Crystal Microbalance with Mass Sensitivity up to 10$^{17}$Hz/kg
Qiao Chen, Xian-He Huang** , Wei Pan, Yao Yao
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731
Abstract :A high-$Q$ quartz crystal microbalance (QCM) sensor with a fundamental resonance frequency of 210 MHz is developed based on inverted mesa technology. The mass sensitivity reaches $5.332\times 10^{17}$ Hz/kg at the center of the electrode, which is 5–7 orders of magnitude higher than the commonly used 5 MHz or 10 MHz QCMs (their mass sensitivity is $10^{10}$–$10^{12}$ Hz/kg). This mass sensitivity is confirmed by an experiment of plating 1-ng rigid aluminium films on the surface of the QCM sensor. By comparing the changes in QCM equivalent parameters before and after coating the aluminum films, it is found that the QCM sensor maintains the high-$Q$ characteristics of the quartz crystal while the mass sensitivity is significantly improved. Therefore, this QCM sensor may be used as a promising analytical tool for applications requiring high sensitivity detection.
收稿日期: 2019-08-15
出版日期: 2019-11-25
:
07.07.Mp
(Transducers)
07.75.+h
(Mass spectrometers)
43.25.Zx
(Measurement methods and instrumentation for nonlinear acoustics)
43.35.Ns
(Acoustical properties of thin films)
[1] Wang S Y et al 2019 Nat. Mater. 18 69 [2] Carvajal Ahumada L A et al 2018 J. Sens. 2018 6924094 [3] Jha G et al 2018 Chem. Mater. 30 6549 [4] Zhang Q L et al 2018 Analyst 143 549 [5] Su P G and Chuang T Y 2017 Sens. Actuators A 263 1 [6] Weiss M et al 2019 ACS Appl. Mater. & Interfaces 11 9539 [7] Ito T, Aoki N, Tsuchiya A, Kaneko S, Akiyama K, Uetake K and Suzuki K 2017 J. Sens. 2017 6486891 [8] Cervera-Chiner L, Juan-Borrás M, March C, Arnau A, Escriche I, Montoya Á and Jiménez Y 2018 Food Control 92 1 [9] Chauhan R, Solanki P R, Singh J, Mukherjee I, Basu T and Malhotra B D 2015 Food Control 52 60 [10] Bai Q S and Huang X H 2016 J. Sens. 2016 7580483 [11] Yao Y, Zhang H and Huang X H 2017 Sens. Actuators A 258 95 [12] Pierce D E, Kim Y and Vig J R 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 1238 [13] Ma T F, Zhang C, Feng G P and Jiang X N 2010 Chin. Phys. B 19 087701 [14] Pan W, Huang X H, Chen Q, Fan Z C and Xu Y 2019 Chin. Phys. Lett. 36 070701 [15] Tan F and Huang X H 2013 Chin. Phys. Lett. 30 050701 [16] Qiao X X, Zhang X J, Tian Y and Meng Y G 2017 Acta Phys. Sin. 66 044703 (in Chinese) [17] Li Q, Gu Y and Xie B 2017 Chin. Phys. B 26 067704 [18] Sauerbrey G 1959 Physik 155 206 [19] Yao Y and Xue Y J 2015 Sens. Actuators B 211 52 [20] Öztürk S, Kösemen A, Kösemen Z A, Kılınç N, Öztürk Z Z and Penza M 2016 Sens. Actuators B 222 280 [21] Kovář D, Farka Z and Skládal P 2014 Anal. Chem. 86 8680 [22] Ogi H, Naga H, Fukunishi Y, Hirao M and Nishiyama M 2009 Anal. Chem. 81 8068 [23] Uttenthaler E, Schräml M, Mandel J and Drost S 2001 Biosens. Bioelectron. 16 735 [24] March C, García J V, Sánchez Á Arnau A, Jiménez Y, García P, Manclús J J and Montoya Á 2015 Biosens. Bioelectron. 65 1 [25] Fernandez R, Garcia P, Garcia M, Garcia J V, Jimenez Y and Arnau A 2017 Sensors 17 2057 [26] Lubczyk D, Siering C, Lörgen J, Shifrina Z B, Müllen K and Waldvogel S R 2010 Sens. Actuators B 143 561 [27] Huang X H, Bai Q S, Hu J G and Hou D 2017 Sensors 17 1785 [28] Vig J R and Ballato A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 1123 [29] Ward M D and Delawski E J 1991 Anal. Chem. 63 886 [30] Hillier A C and Ward M D 1992 Anal. Chem. 64 2539 [31] Oltra R and Efimov I O 1995 Rev. Sci. Instrum. 66 1136 [32] Josse F, Lee Y, Martin S J and Cernosek R W 1998 Anal. Chem. 70 237 [33] Gao J Y, Huang X H and Wang Y 2013 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 2031 [34] Kawasaki T, Mochida T, Katada J I and Okahata Y 2009 Anal. Sci. 25 1069
[1]
. [J]. 中国物理快报, 2019, 36(7): 70701-.