Mid-IR Laser Generating Ultrasound in a Polyetheretherketone Polymer
Ye Zhang, Gao-You Liu, Yi Chen, Chuan-Peng Qian, Ben-Rui Zhao, Bao-Quan Yao** , Tong-Yu Dai, Xiao-Ming Duan
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001
Abstract :We demonstrate laser ultrasonic generation in polyetheretherketone (PEEK). A middle infrared ZnGeP$_{2}$ optical parametric oscillator (ZGP-OPO) pumped by a Q-switched Ho:YAG laser is employed as the ultrasonic excitation source. The ZGP-OPO has a spectral range of 3.2–3.4 μm. At an output wavelength of 3.4 μm, the maximum average output power of ZGP-OPO is 3.05 W with a pulse width of 24.3 ns, corresponding to a peak power of approximately 127.5 kW. The ultrasound is generated by the laser converted from 3.2 to 3.4 μm in the PEEK composite. The maximum ultrasonic signal amplitude in PEEK is 33 mV under the condition of thermoelastic excitation at 3.4 μm. Ablation occurs in the CPRF sample when the energy fluence is over 122.45 mJ/cm$^{2}$. PEEK has a stronger absorption at 3.4 μm and laser-ultrasound generation is influenced by the wavelength of the laser.
收稿日期: 2019-08-31
出版日期: 2019-10-21
引用本文:
. [J]. 中国物理快报, 2019, 36(11): 114201-.
Ye Zhang, Gao-You Liu, Yi Chen, Chuan-Peng Qian, Ben-Rui Zhao, Bao-Quan Yao, Tong-Yu Dai, Xiao-Ming Duan. Mid-IR Laser Generating Ultrasound in a Polyetheretherketone Polymer. Chin. Phys. Lett., 2019, 36(11): 114201-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/36/11/114201
或
https://cpl.iphy.ac.cn/CN/Y2019/V36/I11/114201
[1] Koch G J, Barnes B W, Petros M et al 2004 Appl. Opt. 43 5092 [2] Mingareev I, Weirauch F, Olowinsky A et al 2012 Opt. Laser Technol. 44 2095 [3] Singh U N, Walsh B M, Yu J et al 2015 Opt. Mater. Express 5 827 [4] Edwards C, Taylor G S and Palmer S B 1989 J. Phys. D 22 1266 [5] Wagner J W, Deaton W B and Spicer J B 1988 Appl. Opt. 27 4696 [6] Silva M Z, Gouyon R and Lepoutre F 2003 Ultrasonics 41 301 [7] Matsumoto T, Nose T, Nagata Y et al 2004 J. Am. Ceram. Soc. 84 1521 [8] Dixon S, Edwards C, Palmer S B et al 1996 J. Phys. D 29 1345 [9] Dubois M, Drake T E et al 2011 Nondestr. Test. Eval. 26 213 [10] Wright W W 1991 Mater. & Des. 12 222 [11] Soutis C 2005 Mater. Sci. & Eng. A 412 171 [12] Pantelakis S, Christos K, Bernd M 2011 J. Poly. Eng. 31 159 [13] Tomohiro Y, Yutaka l, Shin I et al 2007 Compos. Part A 38 2121 [14] Michael R K 2012 Polym. Rev. 52 229 [15] Shekar R I, Kotresh T M, Krishna A S et al 2009 J. Appl. Polym. Sci. 112 2497 [16] Spiros P, Christos K and Bernd M 2011 J. Polym. Eng. 31 159 [17] Dubois M, Lorraine P W, Venchiarutti B et al 2000 AIP Conf. Proc. 509 287 [18] Dubois M, Lorraine P W et al 2002 Ultrasonics 40 809 [19] Dubois M, Lorraine P W, Filkins R J et al 2001 Appl. Phys. Lett. 79 1813 [20] Mahnke P, Peuser P and Huke P 2014 Appl. Phys. B 116 333 [21] David A F, Brent K H et al 2010 J. Mater. Sci. 14 3768
[1]
. [J]. 中国物理快报, 2019, 36(7): 74201-.
[2]
. [J]. 中国物理快报, 2019, 36(4): 44201-.
[3]
. [J]. 中国物理快报, 2019, 36(2): 24201-.
[4]
. [J]. 中国物理快报, 2019, 36(1): 14205-.
[5]
. [J]. 中国物理快报, 2018, 35(9): 92901-.
[6]
. [J]. 中国物理快报, 2018, 35(6): 64201-.
[7]
. [J]. 中国物理快报, 2018, 35(5): 54205-.
[8]
. [J]. 中国物理快报, 2017, 34(12): 124201-.
[9]
. [J]. 中国物理快报, 2017, 34(3): 34206-034206.
[10]
. [J]. 中国物理快报, 2016, 33(07): 74203-074203.
[11]
. [J]. 中国物理快报, 2016, 33(06): 64207-064207.
[12]
. [J]. 中国物理快报, 2016, 33(04): 44203-044203.
[13]
. [J]. 中国物理快报, 2016, 33(04): 44205-044205.
[14]
. [J]. 中国物理快报, 2015, 32(12): 124202-124202.
[15]
. [J]. 中国物理快报, 2015, 32(10): 104201-104201.