Superconducting Single-Layer T-Graphene and Novel Synthesis Routes
Qinyan Gu, Dingyu Xing, Jian Sun**
National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
Abstract :Single-layer superconductors are ideal materials for fabricating superconducting nano devices. However, up to date, very few single-layer elemental superconductors have been predicted and especially no one has been successfully synthesized yet. Here, using crystal structure search techniques and ab initio calculations, we predict that a single-layer planar carbon sheet with 4- and 8-membered rings called T-graphene is a new intrinsic elemental superconductor with superconducting critical temperature ($T_{\rm c}$) up to around 20.8 K. More importantly, we propose a synthesis route to obtain such a single-layer T-graphene, that is, a T-graphene potassium intercalation compound (C$_4$K with $P4/mmm$ symmetry) is firstly synthesized at high pressure ($>$11.5 GPa) and then quenched to ambient condition; and finally, the single-layer T-graphene can be either exfoliated using the electrochemical method from the bulk C$_4$K, or peeled off from bulk T-graphite C$_4$, where C$_4$ can be obtained from C$_4$K by evaporating the K atoms. Interestingly, we find that the calculated $T_{\rm c}$ of C$_4$K is about 30.4 K at 0 GPa, which sets a new record for layered carbon-based superconductors. The present findings add a new class of carbon-based superconductors. In particular, once the single-layer T-graphene is synthesized, it can pave the way for fabricating superconducting devices together with other 2D materials using the layer-by-layer growth techniques.
收稿日期: 2019-07-31
出版日期: 2019-08-03
:
74.62.Bf
(Effects of material synthesis, crystal structure, and chemical composition)
74.62.Fj
(Effects of pressure)
74.70.Wz
(Carbon-based superconductors)
[1] Saito Y, Nojima T and Iwasa Y 2017 Nat. Rev. Mater. 2 16094 [2] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402 [3] Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353 [4] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139 [5] Si C, Liu Z, Duan W and Liu F 2013 Phys. Rev. Lett. 111 196802 [6] Ludbrook B M, Levy G, Nigge P, Zonno M, Schneider M, Dvorak D J, Veenstra C N, Zhdanovich S, Wong D, Dosanjh P 2015 Proc. Natl. Acad. Sci. USA 112 11795 [7] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [8] Penev E S, Kutana A and Yakobson B I 2016 Nano Lett. 16 2522 [9] Zhao Y, Zeng S and Ni J 2016 Phys. Rev. B 93 014502 [10] Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162 [11] Iijima S 1991 Nature 354 56 [12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [13] Li Q, Ma Y, Oganov A R, Wang H, Wang H, Xu Y, Cui T, Mao H K and Zou G 2009 Phys. Rev. Lett. 102 175506 [14] Zhou X F, Qian G R, Dong X, Zhang L, Tian Y and Wang H T 2010 Phys. Rev. B 82 134126 [15] Li Y, Xu L, Liu H and Li Y 2014 Chem. Soc. Rev. 43 2572 [16] Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z 2014 Nature 510 250 [17] Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y and Jena P 2015 Proc. Natl. Acad. Sci. USA 112 2372 [18] Yang X, Yao M, Wu X, Liu S, Chen S, Yang K, Liu R, Cui T, Sundqvist B and Liu B 2017 Phys. Rev. Lett. 118 245701 [19] Terrones H, Terrones M, Hernández E, Grobert N, Charlier J C and Ajayan P M 2000 Phys. Rev. Lett. 84 1716 [20] Liu Y, Wang G, Huang Q, Guo L and Chen X 2012 Phys. Rev. Lett. 108 225505 [21] Majidi R 2017 Theor. Chem. Acc. 136 109 [22] Sheng X L, Cui H J, Ye F, Yan Q B, Zheng Q R and Su G 2012 J. Appl. Phys. 112 074315 [23] Hannay N B, Geballe T H, Matthias B T, Andres K, Schmidt P and MacNair D 1965 Phys. Rev. Lett. 14 225 [24] Ganin A Y, Takabayashi Y, Jeglic P, Arcon D, Potocnik A, Baker P J, Ohishi Y, McDonald M T, Tzirakis M D, McLennan A 2010 Nature 466 221 [25] Tang Z K, Zhang L, Wang N, Zhang X X, Wen G H, Li G D, Wang J N, Chan C T and Sheng P 2001 Science 292 2462 [26] Ekimov E A, Sidorov V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D and Stishov S M 2004 Nature 428 542 [27] Xia K, Ma M, Liu C, Gao H, Chen Q, He J, Sun J, Wang H T, Tian Y and Xing D 2017 Mater. Today Phys. 3 76 [28] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63 [29] Grüneis A, Attaccalite C, Rubio A, Vyalikh D V, Molodtsov S L, Fink J, Follath R, Eberhardt W, Büchner B and Pichler T 2009 Phys. Rev. B 79 205106 [30] Pan Z H, Camacho J, Upton M H, Fedorov A V, Howard C A, Ellerby M and Valla T 2011 Phys. Rev. Lett. 106 187002 [31] Smith R P, Kusmartseva A, Ko Y T C, Saxena S S, Akrap A, Forró L, Laad M, Weller T E, Ellerby M and Skipper N T 2006 Phys. Rev. B 74 024505 [32] Weller T E, Ellerby M, Saxena S S, Smith R P and Skipper N T 2005 Nat. Phys. 1 39 [33] Emery N, Hérold C, d'Astuto M, Garcia V, Bellin C, Marêché J F, Lagrange P and Loupias G 2005 Phys. Rev. Lett. 95 087003 [34] Gauzzi A, Takashima S, Takeshita N, Terakura C, Takagi H, Emery N, Hérold C, Lagrange P and Loupias G 2007 Phys. Rev. Lett. 98 067002 [35] Profeta G, Calandra M and Mauri F 2012 Nat. Phys. 8 131 [36] Xue M, Chen G, Yang H, Zhu Y, Wang D, He J and Cao T 2012 J. Am. Chem. Soc. 134 6536 [37] Chapman J, Su Y, Howard C A, Kundys D, Grigorenko A N, Guinea F, Geim A K, Grigorieva I V and Nair R R 2016 Sci. Rep. 6 23254 [38] Zhang W, Oganov A R, Goncharov A F, Zhu Q, Boulfelfel S E, Lyakhov A O, Stavrou E, Somayazulu M, Prakapenka V B and Konôpková Z 2013 Science 342 1502 [39] Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17005 [40] Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201 [41] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131 [42] Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H T and Xing D 2018 Sci. Bull. 63 817 [43] Salamat A, Fischer R A, Briggs R, McMahon M I and Petitgirard S 2014 Coord. Chem. Rev. 277 15 [44] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [45] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033 [46] Kim D Y, Stefanoski S, Kurakevych O O and Strobel T A 2015 Nat. Mater. 14 169 [47] Zacharia R, Ulbricht H and Hertel T 2004 Phys. Rev. B 69 155406 [48] Ziambaras E, Kleis J, Schröder E and Hyldgaard P 2007 Phys. Rev. B 76 155425 [49] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G 2018 Nat. Nanotechnol. 13 246 [50] Lee J W, Kim M, Na W, Hong S M and Koo C M 2015 Carbon 91 527 [51] Bharath G, Alhseinat E, Ponpandian N, Khan M A, Siddiqui M R, Ahmed F and Alsharaeh E H 2017 Sep. Purif. Technol. 188 206 [52] Tan R K L, Reeves S P, Hashemi N, Thomas D G, Kavak E, Montazami R and Hashemi N N 2017 J. Mater. Chem. A 5 17777 [53] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473 [54] Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H and Aoki H 2008 Phys. Rev. Lett. 101 087004 [55] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 [56] He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z 2013 Nat. Mater. 12 605 [57] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [58] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [59] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [60] Grimme S 2006 J. Comput. Chem. 27 1787 [61] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [62] Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401 [63] érez P and Soler J M 2009 Phys. Rev. Lett. 103 096102 [64] Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101 [65] Hoover W G 1985 Phys. Rev. A 31 1695 [66] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I 2009 J. Phys.: Condens. Matter 21 395502
[1]
. [J]. 中国物理快报, 2023, 40(1): 17401-.
[2]
. [J]. 中国物理快报, 2023, 40(1): 17403-.
[3]
. [J]. 中国物理快报, 2020, 37(9): 97401-.
[4]
. [J]. 中国物理快报, 2019, 36(10): 107403-.
[5]
. [J]. 中国物理快报, 2019, 36(2): 27401-.
[6]
. [J]. 中国物理快报, 2018, 35(9): 97401-097401.
[7]
. [J]. 中国物理快报, 2016, 33(03): 37401-037401.
[8]
. [J]. 中国物理快报, 2015, 32(4): 47401-047401.
[9]
. [J]. 中国物理快报, 2013, 30(7): 77403-077403.
[10]
. [J]. 中国物理快报, 2012, 29(8): 87401-087401.
[11]
TAO Qian;SHEN Jing-Qin;LI Lin-Jun;LIN Xiao;LUO Yong-Kang;CAO Guang-Han;XU Zhu-An. Upper Critical Fields and Anisotropy of BaFe1.9 Ni0.1 As2 Single Crystals [J]. 中国物理快报, 2009, 26(9): 97401-097401.
[12]
MA Yan-Wei;GAO Zhao-Shun;WANG Lei;QI Yan-Peng;WANG Dong-Liang;ZHANG Xian-Ping. Simple One-Step Synthesis and Superconducting Properties of SmFeAsO1-x Fx [J]. 中国物理快报, 2009, 26(3): 37401-037401.
[13]
CHEN Gen-Fu;LI Zheng;LI Gang;HU Wan-Zheng;DONG Jing;ZHOU Jun;ZHANG Xiao-Dong;ZHENG Ping;WANG Nan-Lin;LUO Jian-Lin. Superconductivity in Hole-Doped (Sr1-x Kx )Fe2 As2 [J]. 中国物理快报, 2008, 25(9): 3403-3405.
[14]
CHEN Gen-Fu;LI Zheng;WU Dan;DONG Jing;LI Gang;HU Wan-Zheng;ZHENGPing;LUO Jian-Lin;WANG Nan-Lin. Element Substitution Effect in Transition Metal Oxypnictide Re(O1-x Fx )TAs (Re=rare earth, T=transition metal) [J]. 中国物理快报, 2008, 25(6): 2235-2238.
[15]
SUN Xue-Feng;YU Jing;WANG Fa;ZHANG Han. Relation of Structure and Superconductivity in Self-Compensating Y1-x Cax Ba2-x Lax Cu3 Oy [J]. 中国物理快报, 2006, 23(8): 2221-2224.