Implementation of Full Spin-State Interferometer
Peng-Ju Tang1 , Peng Peng1 , Xiang-Yu Dong1 , Xu-Zong Chen1 , Xiao-Ji Zhou1,2**
1 State Key Laboratory of Advanced Optical Communication System and Network, School of Electronics Engineering and Computer Science, Peking University, Beijing 1008712 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006
Abstract :Matter-wave interferometers with spin quantum states are attractive in quantum manipulation and precision measurements. Here, five spatial interference patterns corresponding to the full spin states are observed in each run of the experiment, by the combination of the Majorana transition according to the exponential modulation of the magnetic field pulse decline curve and radio frequency coupling among multiple magnetic sub-states. Compared to the realization of two Majorana transitions, the interference fringe for the magnetic field insensitive state also has a higher contrast. After spatially overlapping the full magnetic sub-state interference patterns dozens of times in consecutive experimental measurements, clear fringes are still observed, indicating the great stability of the relative phases of different components. This indicates the potential to achieve an interferometer with multiple spin clocks.
收稿日期: 2019-02-04
出版日期: 2019-04-17
:
03.75.Dg
(Atom and neutron interferometry)
32.80.Qk
(Coherent control of atomic interactions with photons)
02.30.Yy
(Control theory)
[1] Cronin A D, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051 [2] Hu D, Niu L X, Jin S J, Chen X Z, Dong G J, Schmiedmayer J and Zhou X J 2018 Commun. Phys. 1 29 [3] Niu L X, Jin S J, Chen X Z, Li X P and Zhou X J 2018 Phys. Rev. Lett. 121 265301 [4] Andrews M R, Townsend C G, Miesner H, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637 [5] Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191 [6] Hall D, Matthews M, Wieman C and Cornell E A 1998 Phys. Rev. Lett. 81 1543 [7] Eto Y, Shibayama H, Saito H and Hirano T 2018 Phys. Rev. A 97 021602 [8] Machluf S, Japha Y and Folman R 2013 Nat. Commun. 4 2424 [9] Eto Y, Saito H and Hirano T 2014 Phys. Rev. Lett. 112 185301 [10] Von Prillwitz K, Rudnicki L and Mintert F 2015 Phys. Rev. A 92 052114 [11] Paul T and Qureshi T 2017 Phys. Rev. A 95 042110 [12] Wheeler M H, Mertes K M, Erwin J D and Hall D S 2004 Phys. Rev. Lett. 93 170402 [13] Margalit Y, Zhou Z F, Machluf S, Rohrlich D, Japha Y and Folman R 2015 Science 349 1205 [14] Pikovski I, Zych M, Costa F and Brukner Č 2017 New J. Phys. 19 025011 [15] Schmiedmayer J, Ekstrom C R, Chapman M S, Hammond T D and Pritchard D E 1994 J. Phys. II 4 2029 [16] Petrovic J, Herrera I, Lombardi P, Schaefer F and Cataliotti F S 2013 New J. Phys. 15 043002 [17] Ma X Q, Xia L, Yang F, Zhou X J, Wang Y Q, Guo H and Chen X Z 2006 Phys. Rev. A 73 013624 [18] Xia L, Xu X, Guo R, Yang F, Xiong W, Li J T, Ma Q L, Zhou X J, Guo H and Chen X Z 2008 Phys. Rev. A 77 043622 [19] Lovecchio C, Schäfer F, Cherukattil S, Alì Khan M, Herrera I, Cataliotti F S, Calarco T, Montangero S and Caruso F 2016 Phys. Rev. A 93 010304 [20] Lovecchio C, Cherukattil S, Cilenti B, Herrera I, Cataliotti F S, Montangero S, Calarco T and Caruso F 2015 New J. Phys. 17 093024 [21] Lombardi P, Schaefer F, Herrera I, Cherukattil S, Petrovic J, Lovecchio C, Marin F and Cataliotti F 2014 Opt. Express 22 19141 [22] Tang P J, Peng P, Li Z H, Chen X Z, Li X P and Zhou X J 2018 arXiv:1810.05332 [23] Fort C, Maddaloni P, Minardi F, Modugno M and Inguscio M 2001 Opt. Lett. 26 1039 [24] Lu S B, Yao Z W, Li R B, Luo J, Barthwal S, Chen H H, Lu Z X, Wang J and Zhan M S 2018 Opt. Commun. 429 158 [25] Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161 [26] Weihs G, Reck M, Weinfurter H and Zeilinger A 1996 Opt. Lett. 21 302 [27] Weitz M, Heupel T and Hänsch T 1996 Phys. Rev. Lett. 77 2356 [28] Gross C, Zibold T, Nicklas E, Estève J and Oberthaler M K 2010 Nature 464 1165 [29] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[1]
. [J]. 中国物理快报, 2020, 37(4): 43701-.
[2]
. [J]. 中国物理快报, 2016, 33(09): 90304-090304.
[3]
. [J]. 中国物理快报, 2016, 33(08): 80302-080302.
[4]
. [J]. 中国物理快报, 2016, 33(08): 83701-083701.
[5]
. [J]. 中国物理快报, 2015, 32(02): 20301-020301.
[6]
CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap [J]. 中国物理快报, 2012, 29(5): 50305-050305.
[7]
ZHU Bi-Hui;;LIU Shu-Juan;XIONG Hong-Wei;**
. Evolution of the Interference of Bose Condensates Released from a Double-Well Potential [J]. 中国物理快报, 2011, 28(9): 90303-090303.
[8]
CHEN Xi;;YANG Guo-Qing;;WANG Jin;**;ZHAN Ming-Sheng;. Coherent Population Trapping-Ramsey Interference in Cold Atoms [J]. 中国物理快报, 2010, 27(11): 113201-113201.
[9]
DAN Lin;;YAN Hui;;WANG Jin;ZHAN Ming-Sheng;. Chip-Based Square Wave Dynamic Micro Atom Trap [J]. 中国物理快报, 2010, 27(5): 53201-053201.
[10]
WANG Ping;;LI Run-Bing;;YAN Hui;;WANG Jin;ZHAN Ming-Sheng;. Demonstration of a Sagnac-Type Cold Atom Interferometer with Stimulated Raman Transitions [J]. 中国物理快报, 2007, 24(1): 27-30.
[11]
LIU Xiong-Jun;JING Hui;GE Mo-Lin. Soliton Atom Laser with Quantum State Transfer Property [J]. 中国物理快报, 2006, 23(5): 1184-1187.
[12]
LIU Zheng-Dong;ZENG Liang;LIN Yu;WU Qiang;ZHU Shi-Yao. Extracting Information from the Atom-Laser Wave Function Using
Interferometric Measurement with a Laser Standing-Wave Grating [J]. 中国物理快报, 2001, 18(8): 1000-1003.
[13]
LIU Zheng-Dong;ZHU Shi-Yao;LIN Yu;ZENG Liang;PAN Qin-Min
. A Scheme of Interferometric Measurement of an Atomic Wave Function [J]. 中国物理快报, 2000, 17(3): 165-167.