Chin. Phys. Lett.  2022, Vol. 39 Issue (11): 116301    DOI: 10.1088/0256-307X/39/11/116301
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Lattice Thermal Conductivity of MgSiO$_3$ Perovskite and Post-Perovskite under Lower Mantle Conditions Calculated by Deep Potential Molecular Dynamics
Fenghu Yang, Qiyu Zeng, Bo Chen, Dongdong Kang, Shen Zhang, Jianhua Wu, Xiaoxiang Yu*, and Jiayu Dai*
Department of Physics, National University of Defense Technology, Changsha 410003, China
Cite this article:   
Fenghu Yang, Qiyu Zeng, Bo Chen et al  2022 Chin. Phys. Lett. 39 116301
Download: PDF(11630KB)   PDF(mobile)(11718KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Lattice thermal conductivity ($\kappa_{\rm lat}$) of MgSiO$_3$ perovskite and post-perovskite is an important parameter for the thermal dynamics in the Earth. Here, we develop a deep potential of density functional theory quality under entire thermodynamic conditions in the lower mantle, and calculate the $\kappa_{\rm lat}$ by the Green–Kubo relation. Deep potential molecular dynamics captures full-order anharmonicity and considers ill-defined phonons in low-$\kappa_{\rm lat}$ materials ignored in the phonon gas model. The $\kappa_{\rm lat}$ shows negative temperature dependence and positive linear pressure dependence. Interestingly, the $\kappa_{\rm lat}$ undergos an increase at the phase boundary from perovskite to post-perovskite. We demonstrate that, along the geotherm, the $\kappa_{\rm lat}$ increases by 18.2% at the phase boundary. Our results would be helpful for evaluating Earth's thermal dynamics and improving the Earth model.
Received: 19 September 2022      Published: 19 October 2022
PACS:  63.20.kg (Phonon-phonon interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/11/116301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I11/116301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fenghu Yang
Qiyu Zeng
Bo Chen
Dongdong Kang
Shen Zhang
Jianhua Wu
Xiaoxiang Yu
and Jiayu Dai
[1] Lay T, Hernlund J, and Buffett B A 2008 Nat. Geosci. 1 25
[2] Zhang C, Li F, Wei X, Guo M, Wei Y, Li L, Li X, and Zhou Q 2022 Chin. Phys. Lett. 39 096201
[3] Murakami M, Hirose K, Kawamura K, Sata N, and Ohishi Y 2004 Science 304 855
[4]Stacey F D and Davis P M 2008 Physics of the Earth (Cambridge: Cambridge University Press)
[5] Goncharov A F, Haugen B D, Struzhkin V V, Beck P, and Jacobsen S D 2008 Nature 456 231
[6] Osako M and Ito E 1991 Geophys. Res. Lett. 18 239
[7] Manthilake G M, de Koker N, Frost D J, and McCammon C A 2011 Proc. Natl. Acad. Sci. USA 108 17901
[8] Ohta K, Yagi T, Taketoshi N, Hirose K, Komabayashi T, Baba T, Ohishi Y, and Hernlund J 2012 Earth Planet. Sci. Lett. 349–350 109
[9] Ohta K, Yagi T, and Hirose K 2014 Am. Mineral. 99 94
[10] Zhang Z and Wentzcovitch R M 2021 Phys. Rev. B 103 144103
[11] Zhou Y, Dong Z Y, Hsieh W P, Goncharov A F, and Chen X J 2022 Nat. Rev. Phys. 4 319
[12] Wentzcovitch R M, Karki B B, Cococcioni M, and De Gironcoli S 2004 Phys. Rev. Lett. 92 018501
[13] Haigis V, Salanne M, and Jahn S 2012 Earth Planet. Sci. Lett. 355–356 102
[14] Dekura H, Tsuchiya T, Tsuchiya J et al. 2013 Phys. Rev. Lett. 110 025904
[15] Tang X, Ntam M C, Dong J, Rainey E S, and Kavner A 2014 Geophys. Res. Lett. 41 2746
[16] Ghaderi N, Zhang D B, Zhang H, Xian J, Wentzcovitch R M, and Sun T 2017 Sci. Rep. 7 5417
[17] Zhang D B, Allen P B, Sun T, and Wentzcovitch R M 2017 Phys. Rev. B 96 100302
[18] Luo Y, Yang X, Feng T, Wang J, and Ruan X 2020 Nat. Commun. 11 2554
[19] Mukhopadhyay S, Parker D S, Sales B C, Puretzky A A, Mcguire M A, and Lindsay L 2018 Science 360 1455
[20]Ioffe A F and Regel A R 1960 Prog. Semicond. 4 237
[21] Yu X, Ma D, Deng C, Wan X, An M, Meng H, Li X, Huang X, and Yang N 2021 Chin. Phys. Lett. 38 014401
[22] Zhang E, Yao Y, Gao T, Kang D, Wu J, and Dai J 2019 J. Chem. Phys. 151 064116
[23] Ohnishi M, Tadano T, Tsuneyuki S, and Shiomi J 2022 Phys. Rev. B 106 024303
[24] Stackhouse S, Stixrude L, and Karki B B 2015 Earth Planet. Sci. Lett. 427 11
[25] Zhang L, Han J, Wang H, Car R, and Weinan EJPRL 2018 Phys. Rev. Lett. 120 143001
[26] Ouyang Y, Zhang Z, Yu C, He J, Yan G, and Chen J 2020 Chin. Phys. Lett. 37 126301
[27] Zeng Q, Chen B, Yu X, Zhang S, Kang D, Wang H, and Dai J 2022 Phys. Rev. B 105 174109
[28] Deng J and Stixrude L 2021 Geophys. Res. Lett. 48 e2021GL093806
[29] Zeng Q, Yu X, Yao Y, Gao T, Chen B, Zhang S, Kang D, Wang H, and Dai J 2021 Phys. Rev. Res. 3 033116
[30] Giannozzi P, Andreussi O, Brumme T et al. 2017 J. Phys.: Condens. Matter 29 465901
[31] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Blöchl P E 1994 Phys. Rev. B 50 17953
[33] Holzwarth N A W, Tackett A R, and Matthews G E 2001 Comput. Phys. Commun. 135 329
[34] Wang H, Zhang L, Han J, and Weinan E 2018 Comput. Phys. Commun. 228 178
[35] Zhang Y, Wang H, Chen W, Zeng J, Zhang L, Wang H, and Weinan E 2020 Comput. Phys. Commun. 253 107206
[36] Plimpton S 1995 J. Comput. Phys. 117 1
[37] Nosé S 1984 J. Chem. Phys. 81 511
[38] Hoover W G 1985 Phys. Rev. A 31 1695
[39] Tian H W, Shen H Y, Zhang X G, Li X, Jiang W X, and Cui T J 2020 Front. Phys. 8 584077
[40] Tadano T, Gohda Y, and Tsuneyuki S 2014 J. Phys.: Condens. Matter 26 225402
[41] Tadano T and Tsuneyuki S 2015 Phys. Rev. B 92 054301
[42] Green M S 1954 J. Chem. Phys. 22 398
[43] Kubo R 1957 J. Phys. Soc. Jpn. 12 570
[44] Stixrude L and Cohen R 1993 Nature 364 613
[45] Kudoh Y, Ito E, and Takeda H 1987 Phys. Chem. Miner. 14 350
[46] Fiquet G, Dewaele A, Andrault D, Kunz M, and Bihan T L 2000 Geophys. Res. Lett. 27 21
[47] Utsumi W, Funamori N, Yagi T, Ito E, Kikegawa T, and Shimomura O 1995 Geophys. Res. Lett. 22 1005
[48] Funamori N, Yagi T, Utsumi W, Kondo T, Uchida T, and Funamori M 1996 J. Geophys. Res.: Solid Earth 101 8257
[49] Fiquet G, Andrault D, Dewaele A, Charpin T, Kunz M, and Haüsermann D 1998 Phys. Earth Planet. Inter. 105 21
[50] Saxena S K, Dubrovinsky L S, Tutti F, and Bihan T L 1999 Am. Mineral. 84 226
[51] Guignot N, Andrault D, Morard G, Bolfan N, and Mezouar M 2007 Earth Planet. Sci. Lett. 256 162
[52] Jahn S and Madden P A 2007 Phys. Earth Planet. Inter. 162 129
[53] Dekura H and Tsuchiya T 2019 Geophys. Res. Lett. 46 12919
[54] Qiu R, Yu X, Wang D, Zhang S, Kang D, and Dai J 2021 ACS Appl. Nano Mater. 4 10665
[55] Dalton D A, Hsieh W P, Hohensee G T, Cahill D G, and Goncharov A F 2013 Sci. Rep. 3 2400
[56] Lindsay L, Broido D A, Carrete J, Mingo N, and Reinecke T L 2015 Phys. Rev. B 91 121202
[57] Zhang Z, Zhang D B, Onga K, Hasegawa A, Ohta K, Hirose K, and Wentzcovitch R M 2021 Phys. Rev. B 104 184101
[58] Belonoshko A B, Skorodumova N V, Rosengren A, Ahuja R, Johansson B, Burakovsky L, and Preston D L 2005 Phys. Rev. Lett. 94 195701
[59] Oganov A R and Ono S 2004 Nature 430 445
[60] Tosi N, Yuen D A, De Koker N, and Wentzcovitch R M 2013 Phys. Earth Planet. Inter. 217 48
[61] Naliboff J B and Kellogg L H 2006 Geophys. Res. Lett. 33 L12S09
[62] Tosi N, Yuen D A, and Adek O 2010 Earth Planet. Sci. Lett. 298 229
[63]Turcotte D L and Schubert G 2002 Geodynamics 2nd edn (Cambridge: Cambridge University Press)
Related articles from Frontiers Journals
[1] Yulou Ouyang, Zhongwei Zhang, Cuiqian Yu, Jia He, Gang Yan, and Jie Chen. Accuracy of Machine Learning Potential for Predictions of Multiple-Target Physical Properties[J]. Chin. Phys. Lett., 2020, 37(12): 116301
[2] H. Tashakori, B. Khoshnevisan, F. Kanjouri. Ab-Initio Study of Cobalt Impurity Effects on Phonon Spectra, Mechanical and Thermal Properties of Single Wall Carbon Nanotube (5,0)[J]. Chin. Phys. Lett., 2014, 31(04): 116301
Viewed
Full text


Abstract