Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 087701    DOI: 10.1088/0256-307X/34/8/087701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic, Elastic and Piezoelectric Properties of Two-Dimensional Group-IV Buckled Monolayers
Jing Shi1, Yong Gao1, Xiao-Li Wang1**, Si-Ning Yun2**
1MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049
2Functional Materials Laboratory, School of Materials and Mineral Resources, Xi'an University of Architecture and Technology, Xi'an 710055
Cite this article:   
Jing Shi, Yong Gao, Xiao-Li Wang et al  2017 Chin. Phys. Lett. 34 087701
Download: PDF(791KB)   PDF(mobile)(777KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electronic, elastic and piezoelectric properties of two-dimensional (2D) group-IV buckled monolayers (GeSi, SnSi and SnGe) are studied by first principle calculations. According to our calculations, SnSi and SnGe are good 2D piezoelectric materials with large piezoelectric coefficients. The values of $d_{11}$ of SnSi and SnGe are 5.04 pm/V and 5.42 pm/V, respectively, which are much larger than 2D MoS$_{2}$ (3.6 pm/V) and are comparable with some frequently used bulk materials (e.g., wurtzite AlN 5.1 pm/V). Charge transfer is calculated by the Löwdin analysis and we find that the piezoelectric coefficients ($d_{11}$ and $d_{31}$) are highly dependent on the polarizabilities of the anions and cations in group-IV monolayers.
Received: 28 February 2017      Published: 22 July 2017
PACS:  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  73.20.At (Surface states, band structure, electron density of states)  
  62.20.de (Elastic moduli)  
  82.45.Mp (Thin layers, films, monolayers, membranes)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 51672208, the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period under Grant No 2012BAD47B02, the Sci-Tech Research and Development Program of Shaanxi Province under Grant Nos 2010K01-120, 2011JM6010 and 2015JM5183, the Shaanxi Provincial Department of Education under Grant No 2013JK0927, and the SRF for ROCS of SEM.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/087701       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/087701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing Shi
Yong Gao
Xiao-Li Wang
Si-Ning Yun
[1]Noheda B, Cox D E, Shirane G, Gonzalo J A, Cross L E and Park S E 1999 Appl. Phys. Lett. 74 2059
[2]Suchomel M R and Davies P K 2005 Appl. Phys. Lett. 86 262905
[3]Wang X and Chen H 2002 J. Appl. Phys. 91 5979
[4]Shi J, Grinberg I, Wang X and Rappe A M 2014 Phys. Rev. B 89 094105
[5]Qi T, Grinberg I and Rappe A M 2010 Phys. Rev. B 82 134113
[6]Duerloo K A N, Ong M T and Reed E J 2012 J. Phys. Chem. Lett. 3 2871
[7]Alyörük M M, Aierken Y, Çakır D, Peeters F M and Sevik C 2015 J. Phys. Chem. C 119 23231
[8]Blonsky M N, Zhuang H L, Singh A K and Hennig R G 2015 ACS Nano 9 9885
[9]Gomes L C, Carvalho A and Castro Neto A H 2015 Phys. Rev. B 92 214103
[10]Fei R, Li W, Li J and Yang L 2015 Appl. Phys. Lett. 107 173104
[11]Pan L, Liu H J, Wen Y W, Tan X J, Lv H Y, Shi J and Tang X F 2011 Phys. Lett. A 375 614
[12]Wang Y and Ding Y 2016 Appl. Surf. Sci. 382 1
[13]Suzuki T and Yokomizo Y 2010 Physica E 42 2820
[14]Yu W Z, Yan J A and Gao S P 2015 Nanoscale Res. Lett. 10 351
[15]Wang F Q, Zhang S, Yu J and Wang Q 2015 Nanoscale 7 15962
[16]Zhao T, Zhang S, Guo Y and Wang Q 2016 Nanoscale 8 233
[17]Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y and Jena P 2015 Proc. Natl. Acad. Sci. USA 112 2372
[18]Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[19]Kaloni T P, Modarresi M, Tahir M, Roknabadi M R, Schreckenbach G and Freund M S 2015 J. Phys. Chem. C 119 11896
[20]Jamdagni P, Kumar A, Thakur A, Pandey R and Ahluwalia P K 2015 Mater. Res. Express 2 016301
[21]Kaloni T P and Schwingenschlogl U 2013 Chem. Phys. Lett. 583 137
[22]Paolo G, Stefano B, Nicola B, Matteo C, Roberto C, Carlo C, Davide C, Guido L C, Matteo C, Ismaila D, Andrea Dal C, Stefano de G, Stefano F, Guido F, Ralph G, Uwe G, Christos G, Anton K, Michele L, Layla M S, Nicola M, Francesco M, Riccardo M, Stefano P, Alfredo P, Lorenzo P, Carlo S, Sandro S, Gabriele S, Ari P S, Alexander S, Paolo U and Renata M W 2009 J. Phys.: Condens. Matter 21 395502
[23]Rappe A M, Rabe K M, Kaxiras E and Joannopoulos J D 1990 Phys. Rev. B 41 1227
[24]Ramer N J and Rappe A M 1999 Phys. Rev. B 59 12471
[25]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26]Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27]Heyd J 2003 J. Chem. Phys. 118 8207
[28]Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[29]Vanderbilt D 2000 J. Phys. Chem. Solids 61 147
[30]King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651
[31]Vanderbilt D and King-Smith R D 1993 Phys. Rev. B 48 4442
[32]Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
[33]Chen Y, Sun Q and Jena P 2016 J. Mater. Chem. C 4 6353
[34]Bechmann R 1958 Phys. Rev. 110 1060
[35]Lueng C M, Chan H L W, Surya C and Choy C L 2000 J. Appl. Phys. 88 5360
[36]Shimada K 2006 Jpn. J. Appl. Phys. 45 L358
[37]Guy I L, Muensit S and Goldys E M 1999 Appl. Phys. Lett. 75 4133
[38]Noor-A-Alam M, Kim H J and Shin Y H 2014 Phys. Chem. Chem. Phys. 16 6575
[39]Ong M T and Reed E J 2012 ACS Nano 6 1387
[40]V O Ö Cahangirov S and Ciraci S 2014 Phys. Rev. Lett. 112 246803
[41]Li C, Wang L, Wang Z, Yang Y, Ren W and Yang G 2016 Sci. Rep. 6 37788
[42]Agrawal R and Espinosa H D 2011 Nano Lett. 11 786
Related articles from Frontiers Journals
[1] Yali Yang, Laurent Bellaiche, and Hongjun Xiang. Ferroelectricity in Charge-Ordering Crystals with Centrosymmetric Lattices[J]. Chin. Phys. Lett., 2022, 39(9): 087701
[2] Qian Ye, Yu-Hao Shen, and Chun-Gang Duan. Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2021, 38(8): 087701
[3] Wei Zhao, Zhengqian Fu, Jianming Deng, Song Li, Yifeng Han, Man-Rong Li, Xueyun Wang, and Jiawang Hong. Observation of Ferroelastic and Ferroelectric Domains in AgNbO$_{3}$ Single Crystal[J]. Chin. Phys. Lett., 2021, 38(3): 087701
[4] Qunfei Zheng, Qiang Li, Saidong Xue, Yanhui Wu, Lijuan Wang, Qian Zhang, Xiaomei Qin, Xiangyong Zhao, Feifei Wang, and Wenge Yang. Pressure Driven Structural Evolutions of 0.935(Na$_{0.5}$Bi$_{0.5}$)TiO$_{3}$-0.065BaTiO$_{3}$ Lead-Free Ferroelectric Single Crystal through Raman Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(2): 087701
[5] Qiang-zhong Wang, Gang Wang, Fa-xin Li. Precise, Long-Time Displacement Self-Sensing of Piezoelectric Cantilever Actuators Based on Charge Measurement Using the Sawyer–Tower Circuit[J]. Chin. Phys. Lett., 2018, 35(10): 087701
[6] Hui-Zhen Guo, An-Quan Jiang. Thickness Effect on (La$_{0.26}$Bi$_{0.74}$)$_{2}$Ti$_{4}$O$_{11}$ Thin-Film Composition and Electrical Properties[J]. Chin. Phys. Lett., 2018, 35(2): 087701
[7] Shuai-Qi Xu, Yan Zhang, Hui-Zhen Guo, Wen-Ping Geng, Zi-Long Bai, An-Quan Jiang. Improved Polarization Retention of BiFeO$_{3}$ Thin Films Using GdScO$_{3}$ (110) Substrates[J]. Chin. Phys. Lett., 2017, 34(2): 087701
[8] WU Dong-Xu, CHENG Hong-Bin, ZHENG Xue-Jun, WANG Xian-Ying, WANG Ding, LI Jia. Fabrication and Piezoelectric Characterization of Single Crystalline GaN Nanobelts[J]. Chin. Phys. Lett., 2015, 32(10): 087701
[9] LENG Sen-Lin, SHI Wei, LI Guo-Rong, ZHENG Liao-Ying. Potential Barrier Behavior of BaTiO3–(Bi0.5Na0.5)TiO3 Positive Temperature Coefficient of Resistivity Ceramic[J]. Chin. Phys. Lett., 2015, 32(4): 087701
[10] LIU Chang, YU Wen-Jie, ZHANG Bo, XUE Zhong-Ying, WU Wang-Ran, ZHAO Yi, ZHAO Qing-Tai. Equivalent Trap Energy Level Extraction for SiGe Using Gate-Induced-Drain-Leakage Current Analysis[J]. Chin. Phys. Lett., 2014, 31(10): 087701
[11] HUANG Nai-Xing, LÜ Tian-Quan, ZHANG Rui, WANG Yu-Ling, CAO Wen-Wu. Guided Wave Propagation in a Gold Electrode Film on a Pb(Mg1/3Nb2/3)O3–33%PbTiO3 Ferroelectric Single Crystal Substrate[J]. Chin. Phys. Lett., 2014, 31(10): 087701
[12] YU Wen-Jie, ZHANG Bo, LIU Chang, XUE Zhong-Ying, CHEN Ming, ZHAO Qing-Tai. Mobility Enhancement and Gate-Induced-Drain-Leakage Analysis of Strained-SiGe Channel p-MOSFETs with Higher-κ LaLuO3 Gate Dielectric[J]. Chin. Phys. Lett., 2014, 31(1): 087701
[13] RAO Wei, WANG Yun-Bo, WANG Ye-An, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Magnetostatic Coupling in Ba0.8Sr0.2TiO3/CoFe2O4 Magnetoelectric Composite Thin Films of 2-2-Type Structure[J]. Chin. Phys. Lett., 2014, 31(1): 087701
[14] HAO Wen-Tao, ZHANG Jia-Liang, ZHENG Peng, WU Yan-Qing, TAN Yong-Qiang, ZHAO Xu. Influence of Orthorhombic-Tetragonal Phase Transition on Microwave Dielectric Dispersion of BaTiO3 Ceramic[J]. Chin. Phys. Lett., 2013, 30(12): 087701
[15] WANG Ye-An, WANG Yun-Bo, RAO Wei, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Electric and Magnetic Properties and Magnetoelectric Effect of the Ba0.8Sr0.2TiO3/CoFe2O4 Heterostructure Film by Radio-Frequency Magnetron Sputtering[J]. Chin. Phys. Lett., 2013, 30(4): 087701
Viewed
Full text


Abstract