Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 082101    DOI: 10.1088/0256-307X/34/8/082101
NUCLEAR PHYSICS |
Pygmy and Giant Dipole Resonances in Proton-Rich Nuclei $^{17,18}$Ne
Hong Lv1, Shi-Sheng Zhang2, Zhen-Hua Zhang1, Yu-Qian Wu1, Li-Gang Cao1**
1School of Mathematics and Physics, North China Electric Power University, Beijing 102206
2School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191
Cite this article:   
Hong Lv, Shi-Sheng Zhang, Zhen-Hua Zhang et al  2017 Chin. Phys. Lett. 34 082101
Download: PDF(611KB)   PDF(mobile)(598KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The pygmy and giant dipole resonances in proton-rich nuclei $^{17,18}$Ne are investigated with a fully self-consistent approach. The properties of ground states are calculated in the Skyrme Hartree–Fock with the Bardeen–Cooper–Schrieffer approximation to take into account the pairing correlation. The quasiparticle random phase approximation (QRPA) method is used to explore the properties of excited dipole states. In the calculations the SLy5 Skyrme interaction is employed. In addition to the giant dipole resonances, pygmy dipole resonances (PDR) are found to be located in the energy region below 10 MeV in both $^{17,18}$Ne. The strength and transition density show that the low-lying states are typical PDR states. However, analyzing the QRPA amplitudes of proton and neutron 2 quasiparticle (2qp) configurations for a given low-lying state in $^{17,18}$Ne, we find that the PDR state is less collective, more like a single 2qp excitation.
Received: 21 April 2017      Published: 22 July 2017
PACS:  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
  21.60.Ev (Collective models)  
  24.30.Cz (Giant resonances)  
  24.30.Gd (Other resonances)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11375022, 11575060, 11505058 and 11435014.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/082101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/082101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong Lv
Shi-Sheng Zhang
Zhen-Hua Zhang
Yu-Qian Wu
Li-Gang Cao
[1]Savran D et al 2013 Prog. Part. Nucl. Phys. 70 210
[2]Yoshida K and Giai N V 2008 Phys. Rev. C 78 014305
[3]Colò G and Bortignon P F 2001 Nucl. Phys. A 696 427
[4]Litvinova E et al 2009 Phys. Rev. C 79 054312
[5]Paar N et al 2003 Phys. Rev. C 67 034312
[6]Cao L G and Ma Z Y 2004 Mod. Phys. Lett. A 19 2845
[7]Cao L G and Ma Z Y 2005 Phys. Rev. C 71 034305
[8]Ma H L et al 2016 Phys. Rev. C 93 014317
[9]Ebata S et al 2015 Phys. Rev. C 92 049902
[10]Tao C et al 2013 Phys. Rev. C 87 014621
[11]Klimkiewicz A et al 2007 Phys. Rev. C 76 051603(R)
[12]Trippa L et al 2008 Phys. Rev. C 77 061304(R)
[13]Cao L G and Ma Z Y 2008 Chin. Phys. Lett. 25 1625
[14]Carbone A et al 2010 Phys. Rev. C 81 041301(R)
[15]Zhang Z and Chen L W 2014 Phys. Rev. C 90 064317
[16]Daoutidis I and Goriely S 2012 Phys. Rev. C 86 034328
[17]Tsoneva N et al 2015 Phys. Rev. C 91 044318
[18]Leistenschneider A et al 2001 Phys. Rev. Lett. 86 5442
[19]Gibelin J et al 2008 Phys. Rev. Lett. 101 212503
[20]Wieland O et al 2009 Phys. Rev. Lett. 102 092502
[21]Adrich P et al 2005 Phys. Rev. Lett. 95 132501
[22]Pfützner M et al 2012 Rev. Mod. Phys. 84 567
[23]Paar N et al 2005 Phys. Rev. Lett. 94 182501
[24]Barbieri C et al 2008 Phys. Rev. C 77 024304
[25]Ma Z Y and Tian Y 2011 Sci. Chin. Phys. Mech. Astron. 54 49
[26]Ma H L et al 2012 Phys. Rev. C 85 044307
[27]Grigorenko L et al 2006 Phys. Lett. B 641 254
[28]Geithner W et al 2008 Phys. Rev. Lett. 101 252502
[29]Tanaka K et al 2010 Phys. Rev. C 82 044309
[30]T Oishi et al 2010 Phys. Rev. C 82 024315
[31]Zhang H Y et al 2003 Chin. Phys. Lett. 20 1462
[32]Zhang S S et al 2013 Eur. Phys. J. A 49 77
[33]Chabanat E et al 1998 Nucl. Phys. A 635 231
[34]Möller P et al 2016 At. Data Nucl. Data Tables 109 1
[35]Lalazissis G A et al 1999 At. Data Nucl. Data Tables 71 1
[36]Grasso M et al 2001 Phys. Rev. C 64 064321
[37]Sandulescu N et al 2000 Phys. Rev. C 61 061301(R)
[38]Zhang S S et al 2004 Phys. Rev. C 70 034308
[39]Wang M et al 2017 Chin. Phys. C 41 030003
[40]Ring P and Schuck P 1980 The Nuclear Many-Body Problem (New York: Springer-Verlag)
[41]Colò G et al 2013 Comput. Phys. Commun. 184 142
Related articles from Frontiers Journals
[1] Jiawei Chen, Junchen Pei, Yu Qiang, and Jihuai Chi. Fission Properties of Neutron-Rich Nuclei around the End Point of $r$-Process[J]. Chin. Phys. Lett., 2023, 40(1): 082101
[2] Jun Xu. Constraining Isovector Nuclear Interactions with Giant Dipole Resonance and Neutron Skin in $^{208}$Pb from a Bayesian Approach[J]. Chin. Phys. Lett., 2021, 38(4): 082101
[3] Chen Liu , Shouyu Wang, Bin Qi , and Hui Jia . Possible Candidates for Chirality in the Odd-Odd As Isotopes[J]. Chin. Phys. Lett., 2020, 37(11): 082101
[4] Yan-Zhao Wang, Yang Li, Chong Qi, Jian-Zhong Gu. Pairing Effects on Bubble Nuclei[J]. Chin. Phys. Lett., 2019, 36(3): 082101
[5] Hong Lv, Shi-Sheng Zhang, Zhen-Hua Zhang, Yu-Qian Wu, Jiang Liu, Li-Gang Cao. Giant Monopole Resonance and Nuclear Incompressibility of Hypernuclei[J]. Chin. Phys. Lett., 2018, 35(6): 082101
[6] Jian-Min Dong, Wei Zuo, Jian-Zhong Gu. First-Order Symmetry Energy Induced by Neutron–Proton Mass Difference[J]. Chin. Phys. Lett., 2016, 33(10): 082101
[7] Jing Peng, Wen-Qiang Xu. Tilted Axis Rotation of $^{57}$Mn in Covariant Density Functional Theory[J]. Chin. Phys. Lett., 2016, 33(01): 082101
[8] QI Bin, ZHANG Nai-Bo, WANG Shou-Yu, SUN Bao-Yuan. Hyperon Effects on the Spin Parameter of Rotating Neutron Stars[J]. Chin. Phys. Lett., 2015, 32(11): 082101
[9] WANG Yan-Zhao, GU Jian-Zhong, YU Guo-Liang, HOU Zhao-Yu. Tensor Force Effect on Shape Coexistence of N=28 Neutron-Rich Isotones[J]. Chin. Phys. Lett., 2014, 31(10): 082101
[10] S. Unlu. Quasi Random Phase Approximation Predictions on Two-Neutrino Double Beta Decay Half-Lives to the First 2+ State[J]. Chin. Phys. Lett., 2014, 31(04): 082101
[11] WEN Pei-Wei, CAO Li-Gang . Spin-Flip Response Function of Finite Nuclei in a Fully Self-Consistent RPA Approach[J]. Chin. Phys. Lett., 2013, 30(5): 082101
[12] YANG Ding, CAO Li-Gang, MA Zhong-Yu. The Nuclear Incompressibility and Isoscalar Giant Dipole Resonance in Relativistic Continuum Random Phase Approximation[J]. Chin. Phys. Lett., 2013, 30(5): 082101
[13] TANG Zhong-Hua, LI Jia-Xing, JI Juan-Xia, ZHOU Tao. Cluster Structure in Be Isotopes within Point-Coupling Covariant Density Functional[J]. Chin. Phys. Lett., 2013, 30(1): 082101
[14] YANG Ding, CAO Li-Gang, MA Zhong-Yu. Fully Self-Consistency in Relativistic Random Phase Approximation[J]. Chin. Phys. Lett., 2012, 29(11): 082101
[15] LI Lu-Lu,MENG Jie,P. Ring,ZHAO En-Guang,ZHOU Shan-Gui,**. Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum[J]. Chin. Phys. Lett., 2012, 29(4): 082101
Viewed
Full text


Abstract