Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 080501    DOI: 10.1088/0256-307X/34/8/080501
GENERAL |
Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations
Quan-Bao Ji1, Zhuo-Qin Yang2, Fang Han3**
1School of Finance, Huainan Normal University, Huainan 232038
2School of Mathematics and Systems Science and LMIB, Beihang University, Beijing 100191
3College of Information Science and Technology, Donghua University, Shanghai 201620
Cite this article:   
Quan-Bao Ji, Zhuo-Qin Yang, Fang Han 2017 Chin. Phys. Lett. 34 080501
Download: PDF(610KB)   PDF(mobile)(607KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Some new elements are introduced into a mathematical model of intracellular calcium oscillations, which make it particularly suitable for the study of bifurcation. In addition to generating regular oscillations, such a modified model can be used to reproduce the burst discharges similar to those recorded in experiments and to describe two new types of oscillatory phenomena. By means of a fast/slow dynamical analysis, we explore the bifurcation and transition mechanisms associated with two types of bursters due to changes in the interaction of two slow variables with different timescales.
Received: 10 April 2017      Published: 22 July 2017
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11372017, 11572084 and 11472061, the Natural Science Foundation for the Higher Education Institutions of Anhui Province under Grant No KJ2016SD54, the Fundamental Research Funds for the Central Universities, and the Distinguished Young Professor Program of Donghua University under Grant No 16D210404.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/080501       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/080501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Quan-Bao Ji
Zhuo-Qin Yang
Fang Han
[1]Berridge M 1993 Nature 361 315
[2]Woods N M, Cuthbertson K S R and Cobbold P H 1986 Nature 319 600
[3]Gu H G, Pan B B and Xu J 2014 Europhys. Lett. 106 50003
[4]Borghans, J A M, Dupont G and Goldbeter A 1997 Biophys. Chem. 66 25
[5]Perc M and Marhl M 2003 Chaos Solitons Fractals 18 759
[6]Hindmarsh J L and Rose R M 1984 Proc. R. Soc. London B: Biological Sci. 221 87
[7]Chay T R, Fan Y S and Lee Y S 1995 Int. J. Bifurcation Chaos Appl. Sci. Eng. 5 595
[8]Mrozek K, Niehaus K and Lutter P 2013 Plants 2 750
[9]Domijan M, Murray R and Sneyd J 2006 J. Nonlinear Sci. 16 483
[10]Izhikevich E M 2000 Int. J. Bifurcation Chaos Appl. Sci. Eng. 10 1171
[11]Mogami H, Gardner J, Gerasimenko O V, Camello P, Petersen O H and Tepikin A V 1999 J. Physiology 518 463
[12]Xie Y, Xu J X and Hu S J 2004 Chaos Solitons Fractals 21 177
[13]Ren W, Hu S J, Zhang B J, Wang F Z, Gong Y F and Xu J X 1997 Int. J. Bifurcation Chaos Appl. Sci. Eng. 7 1867
[14]Kuda O, Jenkins C M, Skinner J R, Moon S H, Su X, Gross R W and Abumrad N A 2011 J. Biol. Chem. 286 17785
[15]Houart G, Dupont G and Goldbeter A 1999 Bull. Math. Biol. 61 507
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 080501
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 080501
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 080501
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 080501
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 080501
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 080501
[7] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 080501
[8] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 080501
[9] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 080501
[10] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 080501
[11] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 080501
[12] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 080501
[13] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 080501
[14] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 080501
[15] TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong, YANG Jun-Zhong. Collective Dynamics for Network-Organized Identical Excitable Nodes[J]. Chin. Phys. Lett., 2015, 32(02): 080501
Viewed
Full text


Abstract