Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 077101    DOI: 10.1088/0256-307X/34/7/077101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Topological Nodal Line Semimetal in Non-Centrosymmetric PbTaS$_2$
Jian-Peng Sun**
SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Jian-Peng Sun 2017 Chin. Phys. Lett. 34 077101
Download: PDF(1745KB)   PDF(mobile)(1734KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Topological semimetals are a new type of matter with one-dimensional Fermi lines or zero-dimensional Weyl or Dirac points in momentum space. Here using first-principles calculations, we find that the non-centrosymmetric PbTaS$_2$ is a topological nodal line semimetal. In the absence of spin-orbit coupling (SOC), one band inversion happens around a high symmetrical $H$ point, which leads to forming a nodal line. The nodal line is robust and protected against gap opening by mirror reflection symmetry even with the inclusion of strong SOC. In addition, it also hosts exotic drumhead surface states either inside or outside the projected nodal ring depending on surface termination. The robust bulk nodal lines and drumhead-like surface states with SOC in PbTaS$_2$ make it a potential candidate material for exploring the freakish properties of the topological nodal line fermions in condensed matter systems.
Received: 30 March 2017      Published: 23 June 2017
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.At (Surface states, band structure, electron density of states)  
  71.55.Ak (Metals, semimetals, and alloys)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11504366, and the National Basic Research Program of China under Grant Nos 2015CB921503 and 2016YFE0110000.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/077101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/077101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian-Peng Sun
[1]Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[2]Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[3]Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[4]Miao M S, Yan Q, Van de Walle C G, Lou W K, Li L L and Chang K 2012 Phys. Rev. Lett. 109 186803
[5]Zhang D, Lou W, Miao M, Zhang S C and Chang K 2013 Phys. Rev. Lett. 111 156402
[6]Moore J E and Balents L 2007 Phys. Rev. B 75 121306
[7]Young S M, Zaheer S, Teo J C Y, Kane C L Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[8]Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[9]Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[10]Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[11]Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373
[12]Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613
[13]Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[14]Kim Y, Wieder B J, Kane C L and Rappe A M 2015 Phys. Rev. Lett. 115 036806
[15]Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
[16]Xie L S, Schoop L M, Seibel E M, Gibson Q D, Xie W and Cava R J 2015 APL Mater. 3 083602
[17]Chan Y H, Chiu C K, Chou M Y and Schnyder A P 2016 Phys. Rev. B 93 205132
[18]Huang H, Liu J, Vanderbilt D and Duan W 2016 Phys. Rev. B 93 201114
[19]Zhu Z, Li M and Li J 2016 Phys. Rev. B 94 155121
[20]Fang C, Chen Y, Kee H Y and Fu L 2015 Phys. Rev. B 92 081201
[21]Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B, Lee C C, Jeng H T, Zhang C, Yuan Z, Jia S, Bansil A, Chou F, Lin H and Hasan M Z 2016 Nat. Commun. 7 10556
[22]Bian G, Chang T R, Zheng H, Velury S, Xu S Y, Neupert T, Chiu C K, Huang S M, Sanchez D S, Belopolski I, Alidoust N, Chen P J, Chang G, Bansil A, Jeng H T, Lin H and Hasan M Z 2016 Phys. Rev. B 93 121113
[23]Sun J P, Zhang D and Chang K 2017 Chin. Phys. Lett. 34 027102
[24]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[25]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26]Blöchl P E 1994 Phys. Rev. B 50 17953
[27]Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[28]Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[29]Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
[30]Sancho M P L, Sancho J M L and Rubio J 1984 J. Phys. F 14 1205
[31]Sancho M P L, Sancho J M L, Sancho J M L and Rubio J 1985 J. Phys. F 15 851
[32]Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[33]Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 077101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 077101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 077101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 077101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 077101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 077101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 077101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 077101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 077101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 077101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 077101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 077101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 077101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 077101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 077101
Viewed
Full text


Abstract