FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode |
Si-Hang Wei1,2,3, Xiang-Jun Shang1,2,3, Ben Ma1,2,3, Ze-Sheng Chen1,2,3, Yong-Ping Liao1,2,3, Hai-Qiao Ni1,2,3**, Zhi-Chuan Niu1,2,3 |
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408 3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
Si-Hang Wei, Xiang-Jun Shang, Ben Ma et al 2017 Chin. Phys. Lett. 34 074202 |
|
|
Abstract A four-wavelength Bragg reflection waveguide edge emitting diode based on intracavity spontaneous parametric down-conversion and four-wave mixing (FWM) processes is made. The structure and its tuning characteristic are designed by the aid of FDTD mode solution. The laser structure is grown by molecular beam epitaxy and processed to laser diode through the semiconductor manufacturing technology. Fourier transform infrared spectroscopy is applied to record wavelength information. Pump around 1.071 μm, signal around 1.77 μm, idler around 2.71 μm and FWM signal around 1.35 μm are observed at an injection current of 560 mA. The influences of temperature, carrier density and pump wavelength on tuning characteristic are shown numerically and experimentally.
|
|
Received: 22 January 2017
Published: 23 June 2017
|
|
PACS: |
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.60.By
|
(Design of specific laser systems)
|
|
42.65.Lm
|
(Parametric down conversion and production of entangled photons)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
|
Fund: Supported by the National Key Basic Research Program of China under Grant Nos 2013CB933304 and 2014CB643904, the National Natural Science Foundation of China under Grant Nos 61435012 and 61274125, and the Strategic Priority Research Program (B) of Chinese Academy of Sciences under Grant No XDB01010200. |
|
|
[1] | Trojek P and Weinfurter H 2008 Appl. Phys. Lett. 92 211103 | [2] | Han K Z, Ning J, He J L, Hou J, Zhang B T and Wang Z W 2015 Chin. Phys. Lett. 32 063303 | [3] | Fejer M M 1994 Phys. Today 47 25 | [4] | Fiore A, Berger V, Rosencher E, Bravetti P and Nagle J 1998 Nature 391 463 | [5] | Abolghasem P, Han J, Bijlani B J, Arjmand A and Helmy A S 2009 Opt. Express 17 9460 | [6] | Bijlani B J and Helmy A S 2009 Opt. Lett. 34 3734 | [7] | Wang L J, Yang Y, Zeng Y G et al 2012 Appl. Phys. B 107 809 | [8] | Fiore A, Berger V, Rosencher E, Laurent N et al 1996 Appl. Phys. Lett. 68 1320 | [9] | Yoo S J B, Caneau C, Bhat R, Koza M A, Rajhel A and Antoniades N 1996 Appl. Phys. Lett. 68 2609 | [10] | Moutzouris K, Venugopal Rao S, Ebrahimzadeh M, De Rossi A et al 2003 Appl. Phys. Lett. 83 620 | [11] | Ducci S, Lanco L, Berger V, De Rossi A, Ortiz V and Calligaro M 2004 Appl. Phys. Lett. 84 2974 | [12] | Boitier F, Orieux A, Autebert C, Lemaitre A et al 2014 Phys. Rev. Lett. 112 183901 | [13] | Abolghasem P and Helmy A S 2009 IEEE J. Quantum Electron. 45 646 | [14] | Luo W and Duan C X 2016 Chin. Phys. Lett. 33 024207 | [15] | Liu Y H et al 2015 Chin. Phys. Lett. 32 024202 | [16] | Gehrsitz S, Reinhart F K, Gourgon C, Herres N, Vonlanthen A and Sigg H 2000 J. Appl. Phys. 87 7825 | [17] | Manning J, Olshansky R and Chin S 1983 IEEE J. Quantum Electron. 19 1525 | [18] | Neave J H, Joyce B A, Dobson P J and Norton N 1983 Appl. Phys. A 31 1 | [19] | Korotkov A L, Perera A G U, Shen W Z, Herfort J et al 2001 J. Appl. Phys. 89 3295 | [20] | Autebert C, Maltese G, Halioua Y, Boitier F et al 2016 Technologies 4 24 | [21] | Tong C, Bijlani B J, Zhao L J, Alali S, Han Q and Helmy A S 2011 IEEE Photon. Technol. Lett. 23 1025 | [22] | Bijlani B J, Abolghasem P and Helmy A S 2013 Appl. Phys. Lett. 103 091103 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|