Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 074202    DOI: 10.1088/0256-307X/34/7/074202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode
Si-Hang Wei1,2,3, Xiang-Jun Shang1,2,3, Ben Ma1,2,3, Ze-Sheng Chen1,2,3, Yong-Ping Liao1,2,3, Hai-Qiao Ni1,2,3**, Zhi-Chuan Niu1,2,3
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408
3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Si-Hang Wei, Xiang-Jun Shang, Ben Ma et al  2017 Chin. Phys. Lett. 34 074202
Download: PDF(825KB)   PDF(mobile)(821KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A four-wavelength Bragg reflection waveguide edge emitting diode based on intracavity spontaneous parametric down-conversion and four-wave mixing (FWM) processes is made. The structure and its tuning characteristic are designed by the aid of FDTD mode solution. The laser structure is grown by molecular beam epitaxy and processed to laser diode through the semiconductor manufacturing technology. Fourier transform infrared spectroscopy is applied to record wavelength information. Pump around 1.071 μm, signal around 1.77 μm, idler around 2.71 μm and FWM signal around 1.35 μm are observed at an injection current of 560 mA. The influences of temperature, carrier density and pump wavelength on tuning characteristic are shown numerically and experimentally.
Received: 22 January 2017      Published: 23 June 2017
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.By (Design of specific laser systems)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
  78.55.Cr (III-V semiconductors)  
Fund: Supported by the National Key Basic Research Program of China under Grant Nos 2013CB933304 and 2014CB643904, the National Natural Science Foundation of China under Grant Nos 61435012 and 61274125, and the Strategic Priority Research Program (B) of Chinese Academy of Sciences under Grant No XDB01010200.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/074202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/074202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Si-Hang Wei
Xiang-Jun Shang
Ben Ma
Ze-Sheng Chen
Yong-Ping Liao
Hai-Qiao Ni
Zhi-Chuan Niu
[1]Trojek P and Weinfurter H 2008 Appl. Phys. Lett. 92 211103
[2]Han K Z, Ning J, He J L, Hou J, Zhang B T and Wang Z W 2015 Chin. Phys. Lett. 32 063303
[3]Fejer M M 1994 Phys. Today 47 25
[4]Fiore A, Berger V, Rosencher E, Bravetti P and Nagle J 1998 Nature 391 463
[5]Abolghasem P, Han J, Bijlani B J, Arjmand A and Helmy A S 2009 Opt. Express 17 9460
[6]Bijlani B J and Helmy A S 2009 Opt. Lett. 34 3734
[7]Wang L J, Yang Y, Zeng Y G et al 2012 Appl. Phys. B 107 809
[8]Fiore A, Berger V, Rosencher E, Laurent N et al 1996 Appl. Phys. Lett. 68 1320
[9]Yoo S J B, Caneau C, Bhat R, Koza M A, Rajhel A and Antoniades N 1996 Appl. Phys. Lett. 68 2609
[10]Moutzouris K, Venugopal Rao S, Ebrahimzadeh M, De Rossi A et al 2003 Appl. Phys. Lett. 83 620
[11]Ducci S, Lanco L, Berger V, De Rossi A, Ortiz V and Calligaro M 2004 Appl. Phys. Lett. 84 2974
[12]Boitier F, Orieux A, Autebert C, Lemaitre A et al 2014 Phys. Rev. Lett. 112 183901
[13]Abolghasem P and Helmy A S 2009 IEEE J. Quantum Electron. 45 646
[14]Luo W and Duan C X 2016 Chin. Phys. Lett. 33 024207
[15]Liu Y H et al 2015 Chin. Phys. Lett. 32 024202
[16]Gehrsitz S, Reinhart F K, Gourgon C, Herres N, Vonlanthen A and Sigg H 2000 J. Appl. Phys. 87 7825
[17]Manning J, Olshansky R and Chin S 1983 IEEE J. Quantum Electron. 19 1525
[18]Neave J H, Joyce B A, Dobson P J and Norton N 1983 Appl. Phys. A 31 1
[19]Korotkov A L, Perera A G U, Shen W Z, Herfort J et al 2001 J. Appl. Phys. 89 3295
[20]Autebert C, Maltese G, Halioua Y, Boitier F et al 2016 Technologies 4 24
[21]Tong C, Bijlani B J, Zhao L J, Alali S, Han Q and Helmy A S 2011 IEEE Photon. Technol. Lett. 23 1025
[22]Bijlani B J, Abolghasem P and Helmy A S 2013 Appl. Phys. Lett. 103 091103
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 074202
[2] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 074202
[3] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 074202
[4] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 074202
[5] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 074202
[6] Ting Fu, Yu-Fei Wang, Xue-You Wang, Xu-Yan Zhou, Wan-Hua Zheng. Mode Control of Quasi-PT Symmetry in Laterally Multi-Mode Double Ridge Semiconductor Laser[J]. Chin. Phys. Lett., 2020, 37(4): 074202
[7] Yan-Ping Li, Li-Jun Yuan, Li Tao, Wei-Xi Chen, Bao-Jun Wang, Jiao-Qing Pan. III–V/Si Hybrid Laser Array with DBR on Si Waveguide[J]. Chin. Phys. Lett., 2019, 36(10): 074202
[8] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 074202
[9] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 074202
[10] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 074202
[11] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 074202
[12] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 074202
[13] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 074202
[14] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 074202
[15] Sheng-Nan Zhang, Xiao-Gang Zhang, Jian-Hui Tu, Zhao-Jie Jiang, Hao-Sen Shang, Chuan-Wen Zhu, Wei Yang, Jing-Zhong Cui, Jing-Biao Chen. A 420nm Blue Diode Laser for the Potential Rubidium Optical Frequency Standard[J]. Chin. Phys. Lett., 2017, 34(7): 074202
Viewed
Full text


Abstract