Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 073201    DOI: 10.1088/0256-307X/34/7/073201
ATOMIC AND MOLECULAR PHYSICS |
State Preparation in a Cold Atom Clock by Optical Pumping
Yu-Xiong Duan1,2, Bin Wang1**, Jing-Feng Xiang1,2, Qian Liu1,2, Qiu-Zhi Qu1, De-Sheng Lü1, Liang Liu1
1Key Laboratory of Quantum Optics, and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Yu-Xiong Duan, Bin Wang, Jing-Feng Xiang et al  2017 Chin. Phys. Lett. 34 073201
Download: PDF(714KB)   PDF(mobile)(712KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We implement optical pumping to prepare cold atoms in our prototype of the $^{87}$Rb space cold atom clock, which operates in the one-way mode. Several modifications are made on our previous physical and optical system. The effective atomic signal in the top detection zone is increased to 2.5 times with 87% pumping efficiency. The temperature of the cold atom cloud is increased by 1.4 $\mu$K. We study the dependences of the effective signal gain and pumping efficiency on the pumping laser intensity and detuning. The effects of $\sigma$ transition are discussed. This technique may be used in the future space cold atom clocks.
Received: 20 April 2017      Published: 23 June 2017
PACS:  32.10.Fn (Fine and hyperfine structure)  
  32.80.Xx (Level crossing and optical pumping)  
  07.87.+v (Spaceborne and space research instruments, apparatus, and components (satellites, space vehicles, etc.))  
Fund: Supported by the Fund from the Ministry of Science and Technology of China under Grant No 2013YQ09094304, and the Youth Innovation Promotion Association of Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/073201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/073201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Xiong Duan
Bin Wang
Jing-Feng Xiang
Qian Liu
Qiu-Zhi Qu
De-Sheng Lü
Liang Liu
[1]Riehle F 2006 Frequency Standards: Basics and Applications (John Wiley & Sons) chap 7 p 223
[2]Wynands R and Weyers S 2005 Metrologia 42 S64
[3]Tremblay P and Jacques C 1990 Phys. Rev. A 41 4989
[4]Avila G et al 1987 Phys. Rev. A 36 3719
[5]Ohshima S, Nakadan Y S and Koga Y 1988 IEEE Trans. Instrum. Meas. 37 409
[6]Di Domenico G et al 2010 Phys. Rev. A 82 053417
[7]Chalupczak W and Szymaniec K 2005 Phys. Rev. A 71 053410
[8]Szymaniec K et al 2013 Appl. Phys. B 111 527
[9]Szymaniec K and Park S E 2011 IEEE Trans. Instrum. Meas. 60 2475
[10]Takamizawa A et al 2015 IEEE Trans. Instrum. Meas. 64 2504
[11]Fang F et al 2015 Frequency Control Symposium & the European Frequency and Time Forum (FCS), 2015 Joint Conference of the IEEE International (Denver, USA 12–16 April 2015) p 492
[12]Ren W et al 2016 Chin. Phys. B 25 060601
[13]Qu Q Z et al 2015 Chin. J. Laser B 42 0902006 (in Chinese)
[14]Lü D S et al 2011 Chin. Phys. Lett. 28 063201
[15]Wang B et al 2011 Chin. Phys. Lett. 28 063701
[16]Qu Q Z et al 2015 Chin. Opt. Lett. 13 061405
[17]Zhang S S et al 2016 Chin. Phys. B 25 114203
[18]Wang L R et al 2015 Chin. Phys. B 24 063201
[19]Wang P J et al 2011 Chin. Phys. B 20 016701
[20]Théobald G et al 1989 Opt. Commun. 71 256
[21]Dalton B J, McDuff R and Knight P L 1985 Opt. Acta 32 61
Related articles from Frontiers Journals
[1] Shao-Long Chen, Peng-Peng Zhou, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, Ke-Lin Gao. Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique[J]. Chin. Phys. Lett., 2020, 37(7): 073201
[2] Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen, Peng-Jun Wang, Jing Zhang. Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC[J]. Chin. Phys. Lett., 2019, 36(4): 073201
[3] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Erratum and Note: Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber [Chin. Phys. Lett. 35(2018)083201][J]. Chin. Phys. Lett., 2018, 35(12): 073201
[4] Yi-Hong Li, Shao-Hua Li, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Experimental Study on Double Resonance Optical Pumping Spectroscopy in a Ladder-Type System of $^{87}$Rb Atoms[J]. Chin. Phys. Lett., 2018, 35(9): 073201
[5] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber[J]. Chin. Phys. Lett., 2018, 35(8): 073201
[6] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 073201
[7] Yi-Chi Zhang, Peng-Rui Fan, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. High-Resolution Rb Two-Photon Transition Spectroscopy by a Femtosecond Frequency Comb via Pulses Control[J]. Chin. Phys. Lett., 2016, 33(11): 073201
[8] Hao Shi, Jie Ma, Xiao-Feng Li, Jie Liu, Shou-Gang Zhang. Simulation and Design of Fluorescence Collector[J]. Chin. Phys. Lett., 2016, 33(09): 073201
[9] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 073201
[10] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 073201
[11] Shu-Kai Cao, Peng-Rui Fan, Yi-Chi Zhang, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Two-Photon Transitions of $^{85}$Rb 5$D_{5/2}$ State by Using an Optical Frequency Comb and a Continuous-Wave Laser[J]. Chin. Phys. Lett., 2016, 33(02): 073201
[12] CAI Juan, YU Wei-Wei, ZHANG Nan. The Scaling Law in the Fine-Structure Splitting of 1s2np States for the Lithium Isoelectronic Sequence[J]. Chin. Phys. Lett., 2014, 31(09): 073201
[13] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 073201
[14] JIN Li, ZHANG Yi-Chi, XIANG Shao-Shan, WANG Li-Rong, MA Jie, ZHAO Yan-Ting, XIAO Lian-Tuan, JIA Suo-Tang. Experimental Measurement of the Absolute Frequencies and Hyperfine Coupling Constants of 133Cs Using a Femtosecond Optical Frequency Comb[J]. Chin. Phys. Lett., 2013, 30(10): 073201
[15] GUO Jian, WANG Yan-Hui. Analysis of Laser-Diode and Lamp Optical Pumping for a Rubidium Beam[J]. Chin. Phys. Lett., 2013, 30(2): 073201
Viewed
Full text


Abstract