Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 070401    DOI: 10.1088/0256-307X/34/7/070401
GENERAL |
Accretion onto the Magnetically Charged Regular Black Hole
M. Azam**, A. Aslam
Division of Science and Technology, University of Education, Lahore 54590, Pakistan
Cite this article:   
M. Azam, A. Aslam 2017 Chin. Phys. Lett. 34 070401
Download: PDF(497KB)   PDF(mobile)(490KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the accretion process for static spherically symmetric geometry, i.e., magnetically charged regular black hole with isotropic fluid. We obtain generalized expressions for the velocity ($u(r)$), speed of sound ($c^2_{\rm s}$), energy density ($\rho(r)$) and accretion rate ($\dot{M}$) at the critical point near the regular black hole during the accretion process. We also plot these physical parameters against fixed values of charge, mass and different values of equation of state parameter to study the process of accretion. We find that radial velocity and energy density of the fluid remain positive and negative as well as rate of change of mass is increased and decreased for dust, stiff, quintessence fluid and phantom-like fluid, respectively.
Received: 06 April 2017      Published: 23 June 2017
PACS:  04.70.Bw (Classical black holes)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  95.35.+d (Dark matter)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/070401       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/070401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Azam
A. Aslam
[1]Perlmutter S et al 1999 Astrophys. J. 517 565
[2]Riess A G et al 1998 Astron. J. 116 1009
[3]Eisenstein D J et al 2005 Astrophys. J. 633 560
[4]Sahni V and Starobinsky A A 2000 Int. J. Mod. Phys. D 09 373
[5]Padmanabhan T 2003 Phys. Rep. 380 235
[6]Nojiri S and Odintsov S 2011 Phys. Rep. 505 59
[7]Peebles P J E and Ratra B 1988 Astrophys. J. 325 L17
[8]Caldwell R R, Dave R and Steinhardt P J 1998 Phys. Rev. Lett. 80 1582
[9]Elizalde E and Hildebrandt S R 2002 Phys. Rev. D 65 124024
[10]Zaslavskii O B 2010 Phys. Lett. B 688 278
[11]Bondi H 1952 Mon. Not. R. Astron. Soc. 112 195
[12]Michel F C 1972 Astrophys. Space Sci. 15 153
[13]Babichev E et al 2004 Phys. Rev. Lett. 93 021102
[14]Babichev E, Dokuchaev V and Eroshenko Y 2005 J. Exp. Theor. Phys. 100 528
[15]Kim S W and Kang Y 2012 Int. J. Mod. Phys. Conf. Ser. 12 320
[16]Debnath U 2015 Eur. Phys. J. C 75 129
[17]Abbas G 2013 Chin. Phys. Lett. 30 100403
[18]Martín-Moruno P et al 2006 Phys. Lett. B 640 117
[19]Martín-Moruno P et al 2009 Gen. Relativ. Gravitation 41 2797
[20]Rodrigues M G and Bernardiniz A E 2012 Int. J. Mod. Phys. D 21 1250075
[21]Bahamonda S and Jamil M 2015 Eur. Phys. J. C 75 508
[22]Jawad A and Umair M 2016 Eur. Phys. J. C 76 123
[23]Lima J A S 2010 Phys. Lett. B 693 218
[24]Sharif M and Abbas G 2011 Chin. Phys. Lett. 28 090402
[25]Sharif M and Abbas G 2012 Chin. Phys. Lett. 29 010401
[26]Nayak B and Jamil M 2012 Phys. Lett. B 709 118
[27]Dwivedee D et al 2014 J. Astrophys. Astron. 35 97
[28]Ma M S 2015 Ann. Phys. 362 529
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 070401
[2] Hao Tang, Yu Song, Rui-Hong Yue, Cheng-Yi Sun. Destroying a Peldan Electrostatic Solution Black Hole[J]. Chin. Phys. Lett., 2017, 34(4): 070401
[3] Yu Song, Hao Tang, De-Cheng Zou, Rui-Hong Yue, Cheng-Yi Sun. Destroying Extremal Kerr–Newman-AdS Black Holes with Test Particles[J]. Chin. Phys. Lett., 2017, 34(3): 070401
[4] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 070401
[5] Jun-Jin Peng, Wen-Chang Xiang, Shao-Hong Cai. Abbott–Deser–Tekin Charge of Dilaton Black Holes with Squashed Horizons[J]. Chin. Phys. Lett., 2016, 33(08): 070401
[6] Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(03): 070401
[7] P. K. Sahoo, K. L. Mahanta, D. Goit, A. K. Sinha, S. S. Xulu, U. R. Das, A. Prasad, R. Prasad. Einstein Energy-Momentum Complex for a Phantom Black Hole Metric[J]. Chin. Phys. Lett., 2015, 32(02): 070401
[8] HE Guan-Sheng, LIN Wen-Bin. The Exact Harmonic Metric for a Moving Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2014, 31(09): 070401
[9] HUANG Qi-Hong, CHEN Ju-Hua, WANG Yong-Jiu. Chaotic Motion of a Charged Particle around a Weakly Magnetized Schwarzschild Black Hole Containing Cosmic String[J]. Chin. Phys. Lett., 2014, 31(06): 070401
[10] ZHAO Zi-Xu, PAN Qi-Yuan, JING Ji-Liang. Holographic Superconductor Models with RF2 Corrections[J]. Chin. Phys. Lett., 2013, 30(12): 070401
[11] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 070401
[12] G. Abbas, R. M. Ramzan. Thermodynamics of Phantom Energy Accreting onto a Black Hole in Einstein–Power–Maxwell Gravity[J]. Chin. Phys. Lett., 2013, 30(10): 070401
[13] S. S. Zade. Dynamics of Apparent Horizons in (N+2)-Dimensional Space-Times[J]. Chin. Phys. Lett., 2012, 29(11): 070401
[14] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 070401
[15] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 070401
Viewed
Full text


Abstract