Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 070304    DOI: 10.1088/0256-307X/34/7/070304
GENERAL |
Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity
Hong-Hua Zhong1,2, Zheng Zhou1,3, Bo Zhu1, Yong-Guan Ke1, Chao-Hong Lee1**
1TianQin Research Center and School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082
2School of Physics and Electronics, Central South University, Changsha 410083
3Department of Physics, Hunan Institute of Technology, Hengyang 421002
Cite this article:   
Hong-Hua Zhong, Zheng Zhou, Bo Zhu et al  2017 Chin. Phys. Lett. 34 070304
Download: PDF(2925KB)   PDF(mobile)(2916KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate how the driving field affects the bound states in the one-dimensional two-particle Bose–Hubbard model with an impurity. In the high-frequency regime, compared with the static lattice [Phys. Rev. Lett. 109 (2012) 116405], a new type of Floquet bound state can be obtained even for a weak particle–particle interaction by tuning the driving amplitude. Moreover, the localization degree of the Floquet bound molecular state can be adjusted by tuning the driving frequency, and even the Floquet bound molecular state can be changed into the Floquet extended state when the driving frequency is below a critical value. Our results provide an efficient way to manipulate bound states in the many-body systems.
Received: 26 April 2017      Published: 23 June 2017
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
Fund: Supported by the National Natural Science Foundation of China under Grants Nos 11374375, 11574405, 11465008 and 11547125, the Hunan Provincial Natural Science Foundation under Grant Nos 2015JJ4020 and 2015JJ2114, and the Scientific Research Fund of Hunan Provincial Education Department under Grant No 14A118.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/070304       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/070304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Hua Zhong
Zheng Zhou
Bo Zhu
Yong-Guan Ke
Chao-Hong Lee
[1]Corson J P and Bohn J L 2015 Phys. Rev. A 91 013616
[2]Boschi C et al 2014 Phys. Rev. A 90 043606
[3]Subrahmanyam V 2004 Phys. Rev. A 69 034304
[4]Weithofer L et al 2014 Phys. Rev. B 90 205416
[5]Miyamoto M 2005 Phys. Rev. A 72 063405
[6]Longhi S 2007 Eur. Phys. J. B 57 45
[7]Corrielli G et al 2013 Phys. Rev. Lett. 111 220403
[8]Longhi S 2014 Opt. Lett. 39 1697
[9]Bulgakov E N and Sadreev A F 2014 Opt. Lett. 39 5212
[10]Boretz Y et al 2014 Phys. Rev. A 90 023853
[11]Neumann J V and Wigner E 1929 Z. Phys. 30 465
[12]Capasso F et al 1992 Nature 358 565
[13]Marinica D C et al 2008 Phys. Rev. Lett. 100 183902
[14]Plotnik Y et al 2011 Phys. Rev. Lett. 107 183901
[15]Hsu C W et al 2013 Nature 499 188
[16]Molina M I et al 2012 Phys. Rev. Lett. 108 070401
[17]Zhang J M et al 2012 Phys. Rev. Lett. 109 116405
Zhang J M et al 2013 Phys. Rev. A 87 023613
[18]Longhi S and Valle G D 2013 J. Phys.: Condens. Matter 25 235601
[19]Grossmann F et al 1991 Phys. Rev. Lett. 67 516
[20]Wu Y and Yang X 2007 Phys. Rev. Lett. 98 013601
[21]Yang X and Wu Y 2007 Commun. Theor. Phys. 48 339
[22]Zhong H et al 2014 Phys. Rev. A 90 023635
[23]Zhou Z et al 2013 New J. Phys. 15 123020
[24]Dong D et al 2015 Chin. Phys. Lett. 32 020303
[25]Yang X and Wu Y 2006 J. Phys. B 39 2285
[26]Lee C et al 2001 Phys. Rev. A 64 053604
[27]Lian X et al 2014 Eur. Phys. J. D 68 189
[28]Ke Y et al 2016 Laser Photon. Rev. 10 995
[29]Chen C et al 2015 Phys. Rev. A 91 052122
[30]González-Santander C et al 2013 Europhys. Lett. 102 17012
[31]Longhi S and Valle G D 2013 Sci. Rep. 3 2219
[32]Valle G D and Longhi S 2014 Phys. Rev. B 89 115118
[33]Sias C et al 2008 Phys. Rev. Lett. 100 040404
[34]Spethmann N et al 2012 Phys. Rev. Lett. 109 235301
[35]Zenesini A et al 2009 Phys. Rev. Lett. 102 100403
[36]Qin X et al 2014 Phys. Rev. A 90 062301
[37]Gong J et al 2009 Phys. Rev. Lett. 103 133002
[38]Winkler K et al 2006 Nature 441 853
Related articles from Frontiers Journals
[1] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 070304
[2] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 070304
[3] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 070304
[4] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 070304
[5] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 070304
[6] K. T. Chan, H. Zainuddin, K. A. M. Atan, A. A. Siddig. Computing Quantum Bound States on Triply Punctured Two-Sphere Surface[J]. Chin. Phys. Lett., 2016, 33(09): 070304
[7] Jie Gao, Min-Cang Zhang. Analytical Solutions to the $D$-Dimensional Schr?dinger Equation with the Eckart Potential[J]. Chin. Phys. Lett., 2016, 33(01): 070304
[8] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 070304
[9] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 070304
[10] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 070304
[11] ZHANG Min-Cang. Analytical Arbitrary-Wave Solutions of the Deformed Hyperbolic Eckart Potential by the Nikiforov–Uvarov Method[J]. Chin. Phys. Lett., 2013, 30(11): 070304
[12] QI Wei, LIANG Zhao-Xin, ZHANG Zhi-Dong. Collective Excitations of a Dipolar Bose–Einstein Condensate in an Anharmonic Trap[J]. Chin. Phys. Lett., 2013, 30(6): 070304
[13] CHEN Jin-Wang, YANG Tao, PAN Xiao-Yin. A New Proof for the Harmonic-Potential Theorem[J]. Chin. Phys. Lett., 2013, 30(2): 070304
[14] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 070304
[15] CHAN Kar-Tim, Hishamuddin Zainuddin, Saeid Molladavoudi. Computation of Quantum Bound States on a Singly Punctured Two-Torus[J]. Chin. Phys. Lett., 2013, 30(1): 070304
Viewed
Full text


Abstract