Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 070302    DOI: 10.1088/0256-307X/34/7/070302
GENERAL |
Implementing Classical Hadamard Transform Algorithm by Continuous Variable Cluster State
Yu Wang**, Qi Su
State Key Laboratory of Cryptology, Beijing 100878
Cite this article:   
Yu Wang, Qi Su 2017 Chin. Phys. Lett. 34 070302
Download: PDF(573KB)   PDF(mobile)(571KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Measurement-based one-way quantum computation, which uses cluster states as resources, provides an efficient model to perform computation. However, few of the continuous variable (CV) quantum algorithms and classical algorithms based on one-way quantum computation were proposed. In this work, we propose a method to implement the classical Hadamard transform algorithm utilizing the CV cluster state. Compared with classical computation, only half operations are required when it is operated in the one-way CV quantum computer. As an example, we present a concrete scheme of four-mode classical Hadamard transform algorithm with a four-partite CV cluster state. This method connects the quantum computer and the classical algorithms, which shows the feasibility of running classical algorithms in a quantum computer efficiently.
Received: 19 January 2017      Published: 23 June 2017
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  21.60.Gx (Cluster models)  
  42.50.Xa (Optical tests of quantum theory)  
  82.80.Nj (Fourier transform mass spectrometry)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11504024, 61502041, 61602045 and 61602046, and the National Key Research and Development Program of China under Grant No 2016YFA0302600.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/070302       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/070302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Wang
Qi Su
[1]Nielsen M A and Chuang I 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2]Monroe C et al 1995 Phys. Rev. Lett. 75 4714
[3]Miwa Y et al 2009 Phys. Rev. A 80 050303
[4]Shor P W 1997 SIAM J. Computing 26 1484
[5]Grover L K 1996 Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing p 212
[6]Harrow A W et al 2009 Phys. Rev. Lett. 103 150502
[7]Cai X D et al 2013 Phys. Rev. Lett. 110 230501
[8]Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[9]Menicucci N C et al 2006 Phys. Rev. Lett. 97 110501
[10]Su X L et al 2007 Phys. Rev. Lett. 98 070502
[11]Yukawa M et al 2008 Phys. Rev. A 78 012301
[12]Chen M et al 2014 Phys. Rev. Lett. 112 120505
[13]Su X L et al 2012 Opt. Lett. 37 5178
[14]Yokoyama S et al 2013 Nat. Photon. 7 982
[15]Ukai R et al 2011 Phys. Rev. Lett. 106 240504
[16]Hao S H et al 2014 Phys. Rev. A 89 032311
[17]Wang Y et al 2010 Phys. Rev. A 81 022311
[18]Ukai R et al 2011 Phys. Rev. Lett. 107 250501
[19]Su X L et al 2013 Nat. Commun. 4 2828
[20]Kunz H O 1979 IEEE Trans. Comput. C-28 267
[21]Tipsmark A et al 2011 Phys. Rev. A 84 050301
[22]Podoshvedov S A 2013 Phys. Rev. A 87 012307
[23]Laing A et al 2012 Phys. Rev. Lett. 108 260505
[24]Zhang J and Braunstein S L 2006 Phys. Rev. A 73 032318
[25]van Loock P et al 2007 Phys. Rev. A 76 032321
[26]Gu M et al 2009 Phys. Rev. A 79 062318
[27]Reid M D 1989 Phys. Rev. A 40 913
[28]Shen H et al 2009 Phys. Rev. A 80 042320
[29]Johnson D H 2006 Scholarpedia 1 2088
[30]Bachor H A and Ralph T C A 2004 Guide to Experiments in Quantum Optics (New York: Wiley-VCH)
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 070302
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 070302
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 070302
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 070302
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 070302
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 070302
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 070302
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 070302
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 070302
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 070302
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 070302
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 070302
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 070302
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 070302
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 070302
Viewed
Full text


Abstract