GENERAL |
|
|
|
|
General Single-Mode Gaussian Operation with Two-Mode Entangled State |
Shu-Hong Hao, Xian-Shan Huang, Dong Wang** |
School of Mathematics and Physics, Anhui University of Technology, Maanshan 243000
|
|
Cite this article: |
Shu-Hong Hao, Xian-Shan Huang, Dong Wang 2017 Chin. Phys. Lett. 34 070301 |
|
|
Abstract Realizing the logic operations with small-scale states is pursued to improve the utilization of quantum resources and to simplify the experimental setup. We propose a scheme to realize a general single-mode Gaussian operation with a two-mode entangled state by utilizing only one nondegenerate optical parametric amplifier and by adjusting four angle parameters. The fidelity of the output mode can be optimized by changing one of the angle parameters. This scheme would be utilized as a basic efficient element in the future large-scale quantum computation.
|
|
Received: 22 February 2017
Published: 23 June 2017
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61205115, 11474003 and 61675006, the Natural Science Foundation of Anhui Province under Grant Nos 1608085MF133 and 1408085MA19, the Foundation for the Young Talent of Anhui Province under Grant No gxyqZD2016065, and the Youth Foundation of Anhui University of Technology under Grant Nos RD16100249. |
|
|
[1] | Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) | [2] | Diao D S 2013 Chin. Phys. Lett. 30 010303 | [3] | Zhou Z, Liu C, Fang Y et al 2012 Appl. Phys. Lett. 101 191113 | [4] | Gu M, Weedbrook C, Menicucci N C et al 2009 Phys. Rev. A 79 062318 | [5] | Marshall K, Pooser R, Siopsis G et al 2015 Phys. Rev. A 92 063825 | [6] | Raussendorf R and Briegel H J A 2001 Phys. Rev. Lett. 86 5188 | [7] | Menicucci N C, van Loock P, Gu M et al 2006 Phys. Rev. Lett. 97 110501 | [8] | Zhang J and Braunstein S L 2006 Phys. Rev. A 73 032318 | [9] | van Loock P, Weedbrook C and Gu M 2007 Phys. Rev. A 76 032321 | [10] | Weedbrook C, Pirandola S, García-Patrón R et al 2012 Rev. Mod. Phys. 84 621 | [11] | Wang Y, Su X, Shen H et al 2010 Phys. Rev. A 81 022311 | [12] | Ukai R, Iwata N, Shimokawa Y et al 2011 Phys. Rev. Lett. 106 240504 | [13] | Ukai R, Yokoyama S, Yoshikawa J I et al 2011 Phys. Rev. Lett. 107 250501 | [14] | Deng X, Hao S, Guo H et al 2016 Sci. Rep. 6 22914 | [15] | Hao S, Deng X, Su X et al 2014 Phys. Rev. A 89 032311 | [16] | Su X, Hao S, Deng X et al 2013 Nat. Commun. 4 2828 | [17] | Su X, Zhao Y, Hao S et al 2012 Opt. Lett. 37 5178 | [18] | Xue P and Bian Z 2016 Chin. Phys. B 25 080305 | [19] | Ukai R, Yoshikawa J I, Iwata N et al 2010 Phys. Rev. A 81 032315 | [20] | Zhang Y, Wang H, Li X et al 2000 Phys. Rev. A 62 023813 | [21] | Nha H and Carmichael H J 2005 Phys. Rev. A 71 032336 | [22] | Scutaru H 1998 J. Phys. A 31 3659 | [23] | Yoshino K, Aoki T and Furusawa A 2007 Appl. Phys. Lett. 90 041111 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|