GENERAL |
|
|
|
|
Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions |
Zhao-Wen Yan1**, Xiao-Li Wang2, Min-Li Li3 |
1School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021 2School of Science, Qilu University of Technology, Ji'nan 250353 3School of Mathematical Sciences, Capital Normal University, Beijing 100048
|
|
Cite this article: |
Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li 2017 Chin. Phys. Lett. 34 070203 |
|
|
Abstract The integrability of a (2+1)-dimensional super nonlinear evolution equation is analyzed in the framework of the fermionic covariant prolongation structure theory. We construct the prolongation structure of the multidimensional super integrable equation and investigate its Lax representation. Furthermore, the Bäcklund transformation is presented and we derive a solution to the super integrable equation.
|
|
Received: 14 April 2017
Published: 23 June 2017
|
|
PACS: |
02.30.Ik
|
(Integrable systems)
|
|
02.30.Jr
|
(Partial differential equations)
|
|
02.40.-k
|
(Geometry, differential geometry, and topology)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11605096, 11547101 and 11601247. |
|
|
[1] | Mathieu P 1988 J. Math. Phys. 29 2499 | [2] | Bellucci S, Ivanov E, Krivonos S and Pichugin A 1993 Phys. Lett. B 312 463 | [3] | Manin Yu I and Radul A O 1985 Commun. Math. Phys. 98 65 | [4] | Roelofs G H M and Kersten P H M 1992 J. Math. Phys. 33 2185 | [5] | Popowicz Z 1994 Phys. Lett. A 194 375 | [6] | Makhankov V G and Pashaev O K 1992 J. Math. Phys. 33 2923 | [7] | Guo J F, Wang S K, Wu K, Yan Z W and Zhao W Z 2009 J. Math. Phys. 50 113502 | [8] | Yan Z W, Li M L, Wu K and Zhao W Z 2010 Commun. Theor. Phys. 53 21 | [9] | Saha M and Roy C A 1999 Int. J. Theor. Phys. 38 2037 | [10] | Yan Z W, Chen M R, Wu K and Zhao W Z 2012 J. Phys. Soc. Jpn. 81 094006 | [11] | Yan Z W 2017 Z. Naturforsch. A 72 331 | [12] | Liu Q P 1995 Lett. Math. Phys. 35 115 | [13] | Chaichian M and Kulish P P 1978 Phys. Lett. B 78 413 | [14] | Mathieu P 1988 Phys. Lett. A 128 169 | [15] | Ibort A, Martinez Alonso L and Reus E 1996 J. Math. Phys. 37 6157 | [16] | McArthur I N and Yung C M 1993 Mod. Phys. Lett. A 8 1739 | [17] | Ma W X, He J S and Qin Z Y 2008 J. Math. Phys. 49 033511 | [18] | Yu J, He J S, Ma W X and Cheng Y 2010 Chin. Ann. Math. B 31 361 | [19] | Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1 | [20] | Wang D S, Yin S J, Tian Y and Liu Y F 2014 Appl. Math. Comput. 229 296 | [21] | Wang D S and Wei X Q 2016 Appl. Math. Lett. 51 60 | [22] | Morris H C 1976 J. Math. Phys. 17 1870 | [23] | Morris H C 1977 J. Math. Phys. 18 285 | [24] | Lu Q K, Guo H Y and Wu K 1983 Commun. Theor. Phys. 2 1029 | [25] | Guo H Y, Hsiang Y Y and Wu K 1982 Commun. Theor. Phys. 1 495 | [26] | Cheng J P, Wang S K, Wu K and Zhao W Z 2010 J. Math. Phys. 51 093501 | [27] | Yan Z W, Li M L, Wu K and Zhao W Z 2013 J. Math. Phys. 54 033506 | [28] | Yang J Y and Ma W X 2016 Mod. Phys. Lett. B 30 1650381 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|