Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 070203    DOI: 10.1088/0256-307X/34/7/070203
GENERAL |
Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions
Zhao-Wen Yan1**, Xiao-Li Wang2, Min-Li Li3
1School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021
2School of Science, Qilu University of Technology, Ji'nan 250353
3School of Mathematical Sciences, Capital Normal University, Beijing 100048
Cite this article:   
Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li 2017 Chin. Phys. Lett. 34 070203
Download: PDF(412KB)   PDF(mobile)(407KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The integrability of a (2+1)-dimensional super nonlinear evolution equation is analyzed in the framework of the fermionic covariant prolongation structure theory. We construct the prolongation structure of the multidimensional super integrable equation and investigate its Lax representation. Furthermore, the Bäcklund transformation is presented and we derive a solution to the super integrable equation.
Received: 14 April 2017      Published: 23 June 2017
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  02.40.-k (Geometry, differential geometry, and topology)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11605096, 11547101 and 11601247.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/070203       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/070203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhao-Wen Yan
Xiao-Li Wang
Min-Li Li
[1]Mathieu P 1988 J. Math. Phys. 29 2499
[2]Bellucci S, Ivanov E, Krivonos S and Pichugin A 1993 Phys. Lett. B 312 463
[3]Manin Yu I and Radul A O 1985 Commun. Math. Phys. 98 65
[4]Roelofs G H M and Kersten P H M 1992 J. Math. Phys. 33 2185
[5]Popowicz Z 1994 Phys. Lett. A 194 375
[6]Makhankov V G and Pashaev O K 1992 J. Math. Phys. 33 2923
[7]Guo J F, Wang S K, Wu K, Yan Z W and Zhao W Z 2009 J. Math. Phys. 50 113502
[8]Yan Z W, Li M L, Wu K and Zhao W Z 2010 Commun. Theor. Phys. 53 21
[9]Saha M and Roy C A 1999 Int. J. Theor. Phys. 38 2037
[10]Yan Z W, Chen M R, Wu K and Zhao W Z 2012 J. Phys. Soc. Jpn. 81 094006
[11]Yan Z W 2017 Z. Naturforsch. A 72 331
[12]Liu Q P 1995 Lett. Math. Phys. 35 115
[13]Chaichian M and Kulish P P 1978 Phys. Lett. B 78 413
[14]Mathieu P 1988 Phys. Lett. A 128 169
[15]Ibort A, Martinez Alonso L and Reus E 1996 J. Math. Phys. 37 6157
[16]McArthur I N and Yung C M 1993 Mod. Phys. Lett. A 8 1739
[17]Ma W X, He J S and Qin Z Y 2008 J. Math. Phys. 49 033511
[18]Yu J, He J S, Ma W X and Cheng Y 2010 Chin. Ann. Math. B 31 361
[19]Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1
[20]Wang D S, Yin S J, Tian Y and Liu Y F 2014 Appl. Math. Comput. 229 296
[21]Wang D S and Wei X Q 2016 Appl. Math. Lett. 51 60
[22]Morris H C 1976 J. Math. Phys. 17 1870
[23]Morris H C 1977 J. Math. Phys. 18 285
[24]Lu Q K, Guo H Y and Wu K 1983 Commun. Theor. Phys. 2 1029
[25]Guo H Y, Hsiang Y Y and Wu K 1982 Commun. Theor. Phys. 1 495
[26]Cheng J P, Wang S K, Wu K and Zhao W Z 2010 J. Math. Phys. 51 093501
[27]Yan Z W, Li M L, Wu K and Zhao W Z 2013 J. Math. Phys. 54 033506
[28]Yang J Y and Ma W X 2016 Mod. Phys. Lett. B 30 1650381
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 070203
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 070203
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 070203
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 070203
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 070203
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 070203
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 070203
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 070203
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 070203
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 070203
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 070203
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 070203
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 070203
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 070203
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 070203
Viewed
Full text


Abstract