Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 070202    DOI: 10.1088/0256-307X/34/7/070202
GENERAL |
Bright-Dark Mixed $N$-Soliton Solution of the Two-Dimensional Maccari System
Zhong Han1, Yong Chen1,2**
1Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
2Department of Physics, Zhejiang Normal University, Jinhua 321004
Cite this article:   
Zhong Han, Yong Chen 2017 Chin. Phys. Lett. 34 070202
Download: PDF(650KB)   PDF(mobile)(652KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The general bright-dark mixed $N$-soliton solution of the two-dimensional Maccari system is obtained with the KP hierarchy reduction method. The dynamics of single and two solitons are discussed in detail. Asymptotic analysis shows that two solitons undergo elastic collision accompanied by a position shift. Furthermore, our analysis on mixed soliton bound states shows that arbitrary higher-order soliton bound states can take place.
Received: 29 March 2017      Published: 23 June 2017
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
Fund: Supported by the Global Change Research Program of China under Grant No 2015CB953904, the National Natural Science Foundation of China under Grant Nos 11675054 and 11435005, and the Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No ZF1213.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/070202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/070202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhong Han
Yong Chen
[1]Maccari A 1997 J. Math. Phys. 38 4151
[2]Zakharov V E and Shabat A B 1972 Sov. Phys. JETP 34 62
[3]Craik A D D 1985 Wave Interactions and Fluid Flows (Cambridge: Cambridge University Press)
[4]Fokas A 1994 Inverse Probl. 10 L19
[5]Uthayakumar A, Nakkeeran K and Porsezian K 1999 Chaos Solitons Fractals 10 1513
[6]Lai D W C and Chow K W 2001 J. Phys. Soc. Jpn. 70 666
[7]Lou S Y and Lu J Z 1996 J. Phys. A 29 4209
[8]Lou S Y and Ruan H Y 2001 J. Phys. A 34 305
[9]Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601
[10]Zhang J F 2001 Commun. Theor. Phys. 35 267
[11]Zhang J F, Huang W H and Zheng C L 2002 Acta Phys. Sin. 51 2676 (in Chinese)
[12]Yuan F, Rao J G, Porsezian K, Mihalache D and He J S 2016 Rom. J. Phys. 61 378
[13]Jimbo M and Miwa T 1983 Publ. RIMS Kyoto Univ. 19 943
[14]Ohta Y, Wang D S and Yang J K 2011 Stud. Appl. Math. 127 345
[15]Feng B F 2014 J. Phys. A 47 355203
[16]Chen J C, Chen Y, Feng B F and Maruno K 2015 J. Phys. Soc. Jpn. 84 034002
[17]Chen J C, Chen Y, Feng B F and Maruno K 2015 J. Phys. Soc. Jpn. 84 074001
[18]Ohta Y and Yang J K 2012 Phys. Rev. E 86 036604
[19]Ohta Y and Yang J K 2013 J. Phys. A 46 105202
[20]Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[21]Zhang X E and Chen Y 2017 Commun. Nonlinear Sci. Numer. Simul. 52 24
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 070202
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 070202
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 070202
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 070202
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 070202
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 070202
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 070202
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 070202
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 070202
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 070202
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 070202
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 070202
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 070202
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 070202
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 070202
Viewed
Full text


Abstract