Chin. Phys. Lett.  2017, Vol. 34 Issue (4): 048201    DOI: 10.1088/0256-307X/34/4/048201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Research of Trap and Electron Density Distributions in the Interface of Polyimide/Al$_{2}$O$_{3}$ Nanocomposite Films Based on IDC and SAXS
Yuan-Yuan Liu1,2, Jing-Hua Yin1**, Xiao-Xu Liu1, Duo Sun1, Ming-Hua Chen1, Zhong-Hua Wu3, Bo Su1
1Key Laboratory of Engineering Dielectric and Its Applications (Ministry of Education), Harbin University of Science and Technology, Harbin 150080
2Harbin Cambridge College, Harbin 150069
3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Yuan-Yuan Liu, Jing-Hua Yin, Xiao-Xu Liu et al  2017 Chin. Phys. Lett. 34 048201
Download: PDF(743KB)   PDF(mobile)(741KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The distributions of traps and electron density in the interfaces between polyimide (PI) matrix and Al$_{2}$O$_{3}$ nanoparticles are researched using the isothermal decay current and the small-angle x-ray scattering (SAXS) tests. According to the electron density distribution for quasi two-phase mixture doped by spherical nanoparticles, the electron densities in the interfaces of PI/Al$_{2}$O$_{3}$ nanocomposite films are evaluated. The trap level density and carrier mobility in the interface are studied. The experimental results show that the distribution and the change rate of the electron density in the three layers of interface are different, indicating different trap distributions in the interface layers. There is a maximum trap level density in the second layer, where the maximum trap level density for the nanocomposite film doped by 25 wt% is $1.054\times10^{22}$ eV$\cdot$m$^{-3}$ at 1.324 eV, resulting in the carrier mobility reducing. In addition, both the thickness and the electron density of the nanocomposite film interface increase with the addition of the doped Al$_{2}$O$_{3}$ contents. Through the study on the trap level distribution in the interface, it is possible to further analyze the insulation mechanism and to improve the performance of nano-dielectric materials.
Received: 03 November 2016      Published: 21 March 2017
PACS:  82.35.Np (Nanoparticles in polymers)  
  82.35.Gh (Polymers on surfaces; adhesion)  
  68.35.Ct (Interface structure and roughness)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51337002, 51077028, 51502063 and 51307046, and the Foundation of Harbin Science and Technology Bureau of Heilongjiang Province under Grant No RC2014QN017034.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/4/048201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I4/048201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuan-Yuan Liu
Jing-Hua Yin
Xiao-Xu Liu
Duo Sun
Ming-Hua Chen
Zhong-Hua Wu
Bo Su
[1]Modesti M, Lorenzetti A, Bon D and Besco S 2005 Polymer 46 10237
[2]Khun N W, Loong P Y, Liu E J and Li L 2015 J. Polym. Eng. 35 23
[3]Tsai M H, Wang H Y, Lu H T, Tseng I H, Lu H H, Huang S L and Yeh J M 2011 Thin Solid Films 519 4969
[4]Ma P C, Nie W, Yang Z H, Zhang P H, Li G, Lei Q Q, Gao L X, Ji X L and Ding M X 2008 J. Appl. Polym. Sci. 108 705
[5]Feng Y, Yin J H, Chen M H and Lei Q Q 2014 IEEE Trans. Dielectr. Electr. Insul. 21 1501
[6]Tian F Q, Lei Q Q, Wang X and Wang Y 2011 Appl. Phys. Lett. 99 142903
[7]Zhang P H, Fan, Y, Wang, F C, Xie H, Li G and Lei Q Q 2005 Chin. Phys. Lett. 22 1253
[8]Lewis T J 2005 J. Phys. D 38 202
[9]Liu X X and Yin J H 2010 Chin. Phys. Lett. 27 096103
[10]Tanaka T, Kozako M, Fuse N and Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669
[11]Mazzanti G, Montanari G C and Alison J M 2003 IEEE Trans. Dielectr. Electr. Insul. 10 187
[12]Alison J M, Mazzanti G, Montanari G C and Palmieri F 2002 Annu. Report Conf. Electr. Insulation Dielectric Phenom. (Cancun Mexico 20–24 October 2002) p 35
[13]O' Konski C T 1960 J. Phys. Chem. 64 605
[14]Watson P K 1998 IEEE Trans. Dielectr. Electr. Insul. 5 21
[15]Wang X, Chen S Q, Cheng X and Tu D M 2009 Proc. CSEE 29 128
[16]Tanaka T 2006 IEEE Conf. Electr. Insulation Dielectric Phenom. (Kansas USA 15–18 October 2006) p 298
[17]Du B X, Li J and Du W IEEE Trans. Dielectr. Electr. Insul. 20 1764 %
[18]Yan G Y, Tian Q, Lui J H Chen B, Sun G A, Huang M and Li X H 2014 Chin. Phys. B 23 076101
Related articles from Frontiers Journals
[1] Weiyu Xie, Yu Zhu, Jianpeng Wang, Aihua Cheng, Zhigang Wang. Magnetic Coupling Induced Self-Assembly at Atomic Level[J]. Chin. Phys. Lett., 2019, 36(11): 048201
[2] CHU Fu-Tong, CHEN Chao, ZHOU Wei, LIU Xing-Zhao. Improved Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors by Employing Polyimide/Chromium Composite Thin Films as Surface Passivation and High-Permittivity Field Plates[J]. Chin. Phys. Lett., 2013, 30(9): 048201
[3] DENG Yan, SHEN Jing. Photoinduced Reorientation Process and Nonlinear Optical Properties of Ag Nanoparticle Doped Azo Polymer Films[J]. Chin. Phys. Lett., 2010, 27(2): 048201
[4] GUO Yao, WANG Zhi-Bing, CUI Yi-Ping, ZHANG Jia-Yu, YE Yong-Hong. Tris (8-Hydroxyquinoline) Aluminium Nanostructure Film and Its Fluorescence Properties[J]. Chin. Phys. Lett., 2008, 25(12): 048201
Viewed
Full text


Abstract