CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electronic Structure and Thermoelectric Power Factor of Na$_{x}$CoO$_{2}$ from First-Principles Calculation |
Peng-Xian Lu1**, Rui-Xia Zhao2 |
1College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001 2Department of Civil Engineering and Architecture, Henan Technical College of Construction, Zhengzhou 450001
|
|
Cite this article: |
Peng-Xian Lu, Rui-Xia Zhao 2017 Chin. Phys. Lett. 34 037101 |
|
|
Abstract To investigate the relationship between the electronic structure and the power factor of Na$_{x}$CoO$_{2}$ ($x=0.3$, 0.5 and 1.0), the first-principles calculation is conducted by using density functional theory and the semi-classical Boltzmann theory. Our results suggest that with the decreasing Na content, a transition from semiconductor to semimetal is observed. Na$_{0.3}$CoO$_{2}$ possesses a higher electrical conductivity at 1000 K due to its increased density of states near the Fermi energy level. However, an optimal Seebeck coefficient at 1000 K is obtained in Na$_{0.5}$CoO$_{2}$ because of its broadened band gap near the Fermi energy level. Consequently, a maximum power factor is realized in Na$_{0.5}$CoO$_{2}$. Thus our work provides a complete understanding of the relationship between the electronic structure and the thermoelectric power factor of Na$_{x}$CoO$_{2}$.
|
|
Received: 04 November 2016
Published: 28 February 2017
|
|
PACS: |
71.20.Nr
|
(Semiconductor compounds)
|
|
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
|
Fund: Supported by the Science Foundation of Henan University of Technology under Grant No 2015XTCX10. |
|
|
[1] | Bell L E 2008 Science 321 1457 | [2] | Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 | [3] | Takada K, Sakurai H, TakayamaMuromachi E, Izumi F, Dilanian R A and Sasaki T 2003 Nature 422 53 | [4] | Ito M, Nagira T, Oda Y, Katsuyama S, Majima K and Nagai H 2002 Mater. Trans. 43 601 | [5] | Seetawan T, Amornkitbamrung V, Burinprakhon T, Maensiri S, Tongbai P, Kurosaki K, Muta H, Uno M and Yamanaka S 2006 J. Alloys Compd. 416 291 | [6] | Peleckis G, Motohashi T and Karppinen M 2003 Appl. Phys. Lett. 83 5416 | [7] | Demchenko D O and Ameen D B 2014 Comput. Mater. Sci. 82 219 | [8] | Tomoya N, Mikio I, Shigeru K, Kazuhiko M and Hiroshi N 2003 J. Alloys Compd. 348 263 | [9] | Yakabe H, Fujita K, Nakamura K and Kikuchi K 1998 Int. Conf. Thermoelectrics (IEEE Service Center, Piscataway NJ United States, 24–28 May 1998) p 551 | [10] | Mrotzek A, Muller E, Plewa J and Altenburg H 2003 International Conference On-ict (IEEE Service Center, La Grande Motte France, 17–21 August 2003) p 219 | [11] | Tsai P H, Zhang T S, Donelson R, Tan T T and Li S 2011 J. Alloys Compd. 509 5183 | [12] | Voneshen D J, Refson K, Borissenko E, Krisch E, Bosak M, Piovano A, Cemal A, Enderle E, Gutmann M J and Hoesch M 2013 Nat. Mater. 12 1028 | [13] | Sun J and Guo Z P 2012 Intergrated Ferroelectrics 137 120 | [14] | Yoshiya M, Okabayashi T, Tada M and Fisher C A J 2010 J. Electron. Mater. 39 1681 | [15] | Jha P K, Troper A, Lima D C, Talatic I C and Sanyald S P 2005 Physica B 366 153 | [16] | Tosawat S, Athorn V U, Prasarn C, Chanchana T and Vittaya A 2010 Comput. Mater. Sci. 49 S225 | [17] | Lynn J W, Huang Q, Brown C M, Miller V L, Foo M L, Schaak R E, Jones C Y, Mackey E A and Cava R J 2003 Phys. Rev. B 68 214516 | [18] | Huang Q, Foo M L, Lynn J W, Zandbergen H W, Lawes G, Wang Y Y, Toby B H, Ramirez A P, Ong N P and Cava R J 2004 J. Phys.: Condens. Matter 16 5803 | [19] | Takahashi Y, Gotoh Y and Akimoto J 2003 J. Solid State Chem. 172 22 | [20] | Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717 | [21] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | [22] | Stiewe C, Bertini L, Toprak M, Christensen M, Platzek D, Williams S, Gatti C, Müller E, Iversen B B, Muhammed M and Rowe M 2005 J. Appl. Phys. 97 044317 | [23] | Kono Y, Ohya N, Taguchi T, Suekuni K, Takabatake T, Yamamoto S and Akai K 2010 J. Appl. Phys. 107 123720 | [24] | Goldsmid H J and Sharp J W 1999 J. Electron. Mater. 28 869 | [25] | Ziman J M 1972 Principles of the Theory of Solid (Cambridge: Cambridge University Press) | [26] | Molenda J, Delmas C and Hagenmuller P 1983 Solid State Ionics 9 431 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|