Chin. Phys. Lett.  2017, Vol. 34 Issue (3): 036101    DOI: 10.1088/0256-307X/34/3/036101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Microstructural Changes of Graphene/PLA/PBC Nanofibers by Electrospinning during Tensile Tests
Wei-Dong Cheng1**†, Chuan-Hui Ren1†, Xiao-Hua Gu1, Zhao-Jun Wu2, Xue-Qing Xing3**, Guang Mo3, Zhong-Jun Chen3, Zhong-Hua Wu3
1College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006
2Department of Practice Teaching and Equipment Management, Qiqihar University, Qiqihar 161006
3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Wei-Dong Cheng, Chuan-Hui Ren, Xiao-Hua Gu et al  2017 Chin. Phys. Lett. 34 036101
Download: PDF(998KB)   PDF(mobile)(992KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This study focuses on the nanostructure and nanostructural changes of novel graphene/poly(lactic acid) (PLA)/ poly(butylene carbonate) (PBC) nanofibers via electrospinning, which are characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile test and in situ small angle x-ray scattering. DSC indicates that the endothermic peak at 295$^\circ\!$C of pure PLA/PBC nanofibers shifted from 317$^{\circ}\!$C to lower 290$^{\circ}\!$C with the increasing graphene content. SEM observations reveal a fine dispersion of graphene in the nanofiber matrices. The graphene/PLA/PBC nanofibers exhibit good improvements in mechanical property. The tensile strength of nanofibers increases with the addition of 0.01 g graphene but reduces with further addition of 0.04 g graphene. The scattering intensities increase dramatically when the strain levels are higher than the yield point due to the nucleation and growth of nanovoids or crystals. However, the increasing content of graphene in the PLA/PBC matrix provokes a strong restriction to the deformation-induced crystals.
Received: 01 December 2016      Published: 28 February 2017
PACS:  61.05.cf (X-ray scattering (including small-angle scattering))  
  78.70.Ck (X-ray scattering)  
  62.20.F- (Deformation and plasticity)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11405199, U1432104, U1332107, 10835008, 11305198 and U1232203, and the Project of Education Department of Heilongjiang Province under Grant Nos 135109211 and 135109214.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/3/036101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I3/036101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei-Dong Cheng
Chuan-Hui Ren
Xiao-Hua Gu
Zhao-Jun Wu
Xue-Qing Xing
Guang Mo
Zhong-Jun Chen
Zhong-Hua Wu
[1]Oksman K, Aitomäki Y, Mathew A P, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X J and Hooshmand S 2016 Compos. Part A 83 2
[2]Rajzer I, Menaszek E, Kwiatkowski R, Planell J A and Castano O 2014 Mater. Sci. Eng. C 44 183
[3]Kayaci F, Umu O C O, Tekinay T and Uyar T 2013 J. Agric. Food Chem. 61 3901
[4]Kurtycz P, Karwowska E, Ciach T, Olszyna A and Kunicki A 2013 Fibers Polym. 14 1248
[5]Chen Y, Lin J, Fei Y N, Wang H B and Gao W D 2010 Fibers Polym. 11 1128
[6]Lu L L, Wu D F, Zhang M and Zhou W D 2012 Ind. Eng. Chem. Res. 51 3682
[7]Xia Y, Yao J, Li N, Shao C H, Shen X Y, Xie L Z, Chen G, Zhang F M and Gu N 2014 J. Bioactive Compatible Polym. 29 486
[8]Ishii D, Ying T H, Mahara A, Murakami S, Yamaoka T, Lee W K and Iwata T 2009 Biomacromolecules 10 237
[9]Monticelli O, Putti M, Gardella L, Cavallo D, Basso A, Prato M and Nitti S 2014 Macromolecules 47 4718
[10]Gu X H, Song X, Shao C H, Zeng P, Lu X K, Shen X Y and Yang Q 2014 Int. J. Electrochem. Sci. 9 8045
[11]Shao M L, Chen L and Yang Q 2013 J. Appl. Polym. Sci. 130 411
[12]Yan E Y, Cao M L, Wang Y W, Meng Y, Zheng H, Hao X Y, Yu Z, Ba X W, Gu X H and Zhang D Q 2016 Mater. Lett. 167 13
[13]Andersson R L, Ström V, Gedde U W, Mallon P E, Hedenqvist M S and Olsson R T 2014 Sci. Rep. 4 6335
[14]Cheng W D, Gu X H, Song X, Zeng P, Wu Z J, Xing X Q, Mo G and Wu Z H 2016 Chin. Phys. B 25 017802
[15]Li X Y, Li X H, Yang C M, Hua W Q, Zhao N, Miao X R, Tian F, Wang Y Z, Bian F G and Wang J 2013 Chin. Phys. B 22 046102
[16]Chiu Y C, Chen Y G, Kuo C C, Tung S H, Kakuchi T and Chen W C 2012 Appl. Mater. Interfaces 4 3387
[17]Lin J Y, Tian F, Shang Y W, Wang F J, Ding B and Yu J Y 2012 Nanoscale 4 5316
[18]Gong Y, Du R, Mo G, Xing X Q, Lü C X and Wu Z H 2014 Polymer 55 4270
[19]Abbasi A, Nasef M M, Takeshi M and Faridi-Majidi R 2014 Chin. J. Polym. Sci. 32 793
[20]Zeinolebadi A, Stribeck N, Ganjaee-Sari M, Dencheva N, Denchev Z and Botta S 2012 Macromol. Mater. Eng. 297 1102
Related articles from Frontiers Journals
[1] LV Xin, WANG Nan, CHEN Xiang-Ming. Evolution from Diffuse Ferroelectric to Relaxor Ferroelectric in Pb1?xBax(Fe1/2Nb1/2)O3 Solid Solutions[J]. Chin. Phys. Lett., 2014, 31(07): 036101
[2] ZUO Ze-Wen, CUI Guang-Lei, WANG Yu, WANG Jun-Zhuan, PU Lin, SHI Yi. GISAXS and ATR-FTIR Studies on Stress-Induced Microstructure Evolution of a-Si:H under H2 Plasma Exposure[J]. Chin. Phys. Lett., 2012, 29(10): 036101
[3] Abderrezak Bouchareb, Badis Bendjemil, , Rafael Piccin, Marcello Baricco. Influence of Rare-Earth Substitution for Iron in FeCrMoCB Bulk Metallic Glasses[J]. Chin. Phys. Lett., 2010, 27(7): 036101
Viewed
Full text


Abstract