Chin. Phys. Lett.  2017, Vol. 34 Issue (3): 030501    DOI: 10.1088/0256-307X/34/3/030501
GENERAL |
Mathematical Constraints in Multiscale Subgrid-Scale Modeling of Nonlinear Systems
Le Fang1,2, Ming-Wei Ge3**
1Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191
2Co-Innovation Center for Advanced Aero-Engine, Beihang University, Beijing 100191
3School of Renewable Energy, North China Electric Power University, Beijing 102206
Cite this article:   
Le Fang, Ming-Wei Ge 2017 Chin. Phys. Lett. 34 030501
Download: PDF(425KB)   PDF(mobile)(424KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To shed light on the subgrid-scale (SGS) modeling methodology of nonlinear systems such as the Navier–Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are shown by generalized derivation of three general mathematical constraints for different combinations of restrictions. These constraints are verified numerically in a one-dimensional nonlinear advection equation. This study is expected to inspire future research on the SGS modeling methodology of nonlinear systems.
Received: 21 October 2016      Published: 28 February 2017
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  47.11.St (Multi-scale methods)  
  05.20.Gg (Classical ensemble theory)  
  47.27.eb (Statistical theories and models)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11572025, 11202013 and 51420105008.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/3/030501       OR      https://cpl.iphy.ac.cn/Y2017/V34/I3/030501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Le Fang
Ming-Wei Ge
[1]Fang L, Shao L and Bertoglio J P 2014 Sci. Chin. Phys. Mech. Astron. 57 2188
[2]Park N, Yoo J Y and Choi H 2005 Phys. Fluids 17 015103
[3]Cui G X, Xu C X, Fang L, Shao L and Zhang Z S 2007 J. Fluid Mech. 582 377
[4]Fang L, Shao L, Bertoglio J P, Cui G X, Xu C X and Zhang Z S 2009 Phys. Fluids 21 065108
[5]Fang L 2011 Theor. Appl. Mech. Lett. 1 032002
[6]Fang L, Li B and Lu L P 2014 Acta Mech. Sin. 30 339
[7]Fang L, Sun X Y and Liu Y W 2016 Phys. Lett. A 380 3988
[8]Kolmogorov A N 1941 Proc.: Math. Phys. Sci. 30 301
[9]Yao S Y, Fang L, Lv J M, Wu J Z and Lu L P 2014 Phys. Lett. A 378 886
[10]Smagorinsky J 1963 Mon. Weather Rev. 91 99
[11]Bardina J, Ferziger J and Reynolds W C 1987 AIAA Paper 80 1357
[12]Leonard A 1974 Adv. Geophys. A18 237
[13]Brun C, Friedrich R and da Silva C B 2006 Theor. Comput. Fluid Dyn. 20 1
[14]Cui G X, Zhou H B, Zhang Z S and Shao L 2004 Phys. Fluids 16 2835
[15]He G W, Rubinstein R and Wang L P 2002 Phys. Fluids 14 2186
[16]Germano M, Piomelli U, Moin P and Cabot W H 1991 Phys. Fluids A 3 1760
[17]Shi Y P, Xiao Z L and Chen S Y 2008 Phys. Fluids 20 011701
Related articles from Frontiers Journals
[1] Xiao Wang, Guo-Dong Wei. Quantum Scars in Microwave Dielectric Photonic Graphene Billiards[J]. Chin. Phys. Lett., 2020, 37(1): 030501
[2] Chu-Han Wang, Le Fang. A Closure for Isotropic Turbulence Based on Extended Scale Similarity Theory in Physical Space[J]. Chin. Phys. Lett., 2018, 35(8): 030501
[3] Sheng-Li Zhu, Lu Gan. Specific Emitter Identification Based on Visibility Graph Entropy[J]. Chin. Phys. Lett., 2018, 35(3): 030501
[4] Sheng-Li Zhu, Lu Gan. Chaos Identification Based on Component Reordering and Visibility Graph[J]. Chin. Phys. Lett., 2017, 34(5): 030501
[5] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 030501
[6] Yan-Jin Wang, Shu-Dao Zhang. Uncertainty Quantification of Numerical Simulation of Flows around a Cylinder Using Non-intrusive Polynomial Chaos[J]. Chin. Phys. Lett., 2016, 33(09): 030501
[7] JI Ying, WANG Ya-Wei. Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2015, 32(4): 030501
[8] MIN Fu-Hong, SHAO Shu-Yi, HUANG Wen-Di, WANG En-Rong. Circuit Implementations, Bifurcations and Chaos of a Novel Fractional-Order Dynamical System[J]. Chin. Phys. Lett., 2015, 32(03): 030501
[9] Rodrigo A. da Silva, Paulo C. Rech. A Parameter-Space Analysis of the Rikitake System[J]. Chin. Phys. Lett., 2013, 30(12): 030501
[10] WANG Guang-Yi, HE Jie-Ling, YUAN Fang, PENG Cun-Jian. Dynamical Behaviors of a TiO2 Memristor Oscillator[J]. Chin. Phys. Lett., 2013, 30(11): 030501
[11] MIN Fu-Hong . Function Projective Synchronization for Two Gyroscopes under Specific Constraints[J]. Chin. Phys. Lett., 2013, 30(7): 030501
[12] Amanda C. Mathias, Paulo C. Rech. Changes in the Dynamics of a Rössler Oscillator by an External Forcing[J]. Chin. Phys. Lett., 2013, 30(3): 030501
[13] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[14] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 030501
[15] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 030501
Viewed
Full text


Abstract