Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 025201    DOI: 10.1088/0256-307X/34/2/025201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak
Song Chai1**, Yu-Hong Xu2, Zhe Gao1, Wen-Hao Wang1, Yang-Qing Liu1, Yi Tan1
1Department of Engineering Physics, Tsinghua University, Beijing 100084
2Southwestern Institute of Physics, Chengdu 610041
Cite this article:   
Song Chai, Yu-Hong Xu, Zhe Gao et al  2017 Chin. Phys. Lett. 34 025201
Download: PDF(593KB)   PDF(mobile)(593KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The characteristics of the energy transfer and nonlinear coupling among edge electromagnetic turbulence in thermal quench sub-period of the internal reconnection event (IRE) are studied at the sino-united spherical tokamak device using multiple Langmuir and magnetic probe arrays. The wavelet bispectral analysis and the modified Kim method are applied to investigate linear growth/damping and nonlinear energy transfer rates, along with multi-field turbulence interactions. The results show a multi-field nonlinear energy transfer from electrostatic to magnetic turbulence that results in two-mode coupling in magnetic turbulence, which may play a crucial role to trigger the IRE.
Received: 01 November 2016      Published: 25 January 2017
PACS:  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Ra (Plasma turbulence)  
  52.35.Vd (Magnetic reconnection)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11261140327, 11325524, 11475102 and 11575057, the Chinese National Fusion Project for ITER under Grant Nos 2013GB112001, 2013GB107001 and 2014GB108000, the Tsinghua University Initiative Scientific Research Program, and the 221 Program.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/025201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/025201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Song Chai
Yu-Hong Xu
Zhe Gao
Wen-Hao Wang
Yang-Qing Liu
Yi Tan
[1]Liewer P C 1985 Nucl. Fusion 25 543
[2]Burrell K H 1997 Phys. Plasmas 4 1499
[3]Sykes A et al 1992 Nucl. Fusion 32 694
[4]Takase Y et al 2001 Nucl. Fusion 41 1543
[5]Sabbagh S A et al 2001 Nucl. Fusion 41 1601
[6]Liu Y Q 2015 Ph. D dissertation: Study of Magnetohydrodynamic Behaviors during Minor Disruptions in SUNIST Plasmas (Beijing: Tsinghua University)
[7]Milligen P V, Hidalgo C and Sanchez E 1995 Phys. Rev. Lett. 74 395
[8]Kim J S et al 1996 Phys. Plasmas 3 3998
[9]Peng Y K M and Strickler D J 1986 Nucl. Fusion 26 769
[10]Ritz C P, Powers E J and Bengtson R D 1989 Phys. Fluids B 1 153
[11]Park W B et al 2003 Nucl. Fusion 43 483
[12]Hayashi T, Mizuguchi N and Sato T 2001 Earth Planets Space 53 561
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 025201
[2] P. W. Shi, Y. R. Yang, W. Chen, Z. B. Shi, Z. C. Yang, L. M. Yu, T. B. Wang, X. X. He, X. Q. Ji, W. L. Zhong, M. Xu, and X. R. Duan. Observation and Simulation of $n=1$ Reversed Shear Alfvén Eigenmode on the HL-2A Tokamak[J]. Chin. Phys. Lett., 2022, 39(10): 025201
[3] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 025201
[4] Liming Yu, Wei Chen, Xiaoquan Ji, Peiwan Shi, Xuantong Ding, Zhongbing Shi, Ruirui Ma, Yumei Hou, Yonggao Li, Jiaxian Li, Jianyong Cao, Wulyu Zhong, Min Xu, and Xuru Duan. Observation of Multiple Broadband Alfvénic Chirping Modes in HL-2A NBI Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 025201
[5] Xiao-Bo Zhang , Xin Qiao , Ai-Xia Zhang , and Ju-Kui Xue. Generation of a Plasma Waveguide with Slow-Wave Structure[J]. Chin. Phys. Lett., 2021, 38(4): 025201
[6] Yumei Hou, Wei Chen, Liming Yu , Yunpeng Zou , Min Xu , and Xuru Duan . Nonlinear Simulations of the Bump-on-Tail Instabilities in Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 025201
[7] Shizhao Wei, Yahui Wang, Peiwan Shi, Wei Chen, Ningfei Chen, and Zhiyong Qiu. Nonlinear Coupling of Reversed Shear Alfvén Eigenmode and Toroidal Alfvén Eigenmode during Current Ramp[J]. Chin. Phys. Lett., 2021, 38(3): 025201
[8] Pei-Wan Shi, Wei Chen, and Xu-Ru Duan. Energetic Particle Physics on the HL-2A Tokamak: A Review[J]. Chin. Phys. Lett., 2021, 38(3): 025201
[9] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 025201
[10] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 025201
[11] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 025201
[12] L. Z. Kahlon, I. Javaid. Formation of Nonlinear Solitary Vortical Structures by Coupled Electrostatic Drift and Ion-Acoustic Waves[J]. Chin. Phys. Lett., 2017, 34(12): 025201
[13] A. Lysenko, I. Volk, A. Serozhko, O. Rybalko. Forming of Space Charge Wave with Broad Frequency Spectrum in Helical Relativistic Two-Stream Electron Beams[J]. Chin. Phys. Lett., 2017, 34(7): 025201
[14] E. F. EL-Shamy. Nonlinear Propagation of Positron-Acoustic Periodic Travelling Waves in a Magnetoplasma with Superthermal Electrons and Positrons[J]. Chin. Phys. Lett., 2017, 34(6): 025201
[15] Guo-Bo Zhang, N. A. M. Hafz, Yan-Yun Ma, Lie-Jia Qian, Fu-Qiu Shao, Zheng-Ming Sheng. Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses[J]. Chin. Phys. Lett., 2016, 33(09): 025201
Viewed
Full text


Abstract