Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 100202    DOI: 10.1088/0256-307X/34/10/100202
GENERAL |
Notes on Canonical Forms of Integrable Vector Nonlinear Schr?dinger Systems
Kui Chen, Da-Jun Zhang**
Department of Mathematics, Shanghai University, Shanghai 200444
Cite this article:   
Kui Chen, Da-Jun Zhang 2017 Chin. Phys. Lett. 34 100202
Download: PDF(404KB)   PDF(mobile)(396KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present canonical forms of integrable vector nonlinear Schrödinger systems. Mathematically, it is enough to focus on these canonical forms.
Received: 01 June 2017      Published: 27 September 2017
PACS:  02.30.Ik (Integrable systems)  
  02.30.Ks (Delay and functional equations)  
  05.45.Yv (Solitons)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11371241.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/100202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/100202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kui Chen
Da-Jun Zhang
[1]Benney D J and Newell A C 1967 J. Math. Phys. 46 133
[2]Zakharov V E 1968 J. Appl. Mech. Tech. Phys. 9 190 (translated from 1968 Zh. Prikl. Mekh. Tekh. Fiz. 9 86)
[3]Zakharov V E 1972 Sov. Phys. JETP 35 908 (translated from 1972 Zh. Eksp. Teor. Fiz. 62 1745)
[4]Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[5]Ablowitz M J, Prinari B and Trubatch A D 2004 Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge: Cambridge University Press)
[6]Wang D S, Zhang D J and Yang J K 2010 J. Math. Phys. 51 023510
[7]Manakov S V 1974 Sov. Phys. JETP. 38 248 (translated from 1973 Zh. Eksp. Toor. Fiz. 65 505)
[8]Priya N V, Senthilvelan M and Lakshmanan M 2014 Phys. Rev. E 89 062901
[9]Li H M, Tian B, Wang D S, Sun W R, Xie X Y and Liu L 2016 J. Mod. Opt. 63 1924
[10]Yan Z Y 2016 Appl. Math. Lett. 62 101
[11]Tian S F 2017 J. Differ. Eq. 262 506
[12]Zakharov V E and Schulman E I 1982 Physica D 4 270
[13]Fordy A P and Kulish P P 1983 Commun. Math. Phys. 89 427
[14]Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
[15]Zhang F Z 2011 Matrix Theory (New York: Springer)
[16]Khukhunashvili V Z 1989 Theor. Math. Phys. 79 467
[17]Geng X G, Liu H and Zhu J Y 2015 Stud. Appl. Math. 135 310
[18]Su T, Dai H H and Geng X G 2013 Chin. Phys. Lett. 30 060201
[19]Tian S F 2016 Proc. R. Soc. A 472 20160588
[20]Vijayajayanthi M, Kanna T and Lakshmanan M 2009 Eur. Phys. J. Spec. Top. 173 57
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 100202
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 100202
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 100202
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100202
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 100202
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 100202
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 100202
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 100202
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 100202
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 100202
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 100202
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 100202
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 100202
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 100202
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 100202
Viewed
Full text


Abstract