Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 080501    DOI: 10.1088/0256-307X/33/8/080501
GENERAL |
A Maxwell Demon Model Connecting Information and Thermodynamics
Pei-Yan Peng, Chang-Kui Duan**
Department of Modern Physics and Department of Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Pei-Yan Peng, Chang-Kui Duan 2016 Chin. Phys. Lett. 33 080501
Download: PDF(381KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the past decades several theoretical Maxwell's demon models have been proposed to exhibit effects such as refrigerating, doing work at the cost of information, and some experiments have been carried out to realize these effects. We propose a model with a two-level demon, information represented by a sequence of bits, and two heat reservoirs. The reservoir that the demon is interacting with depends on the bit. When the temperature difference between the two heat reservoirs is large enough, the information can be erased. On the other hand, when the information is pure enough, heat transfer from one reservoir to the other can happen, resulting in the effect of refrigeration. Genuine examples of such a system are discussed.
Received: 03 March 2016      Published: 31 August 2016
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
  65.40.gd (Entropy)  
  89.70.Cf (Entropy and other measures of information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/080501       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/080501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pei-Yan Peng
Chang-Kui Duan
[1]Landauer R 1961 IBM J. Res. Dev. 5 183
[2]Maruyama K, Nori F and Vedral V 2009 Rev. Mod. Phys. 81 1
[3]Bennett C H 1982 Int. J. Theor. Phys. 21 905
[4]Bennett C H 1987 Sci. Am. 257 108
[5]Sagawa T and Ueda M 2010 Phys. Rev. Lett. 104 090602
[6]Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[7]Juan M R, Jordan M H and Sagawa T 2015 Nat. Phys. 11 131
[8]Sagawa T and Ueda M 2008 Phys. Rev. Lett. 100 080403
[9]Sagawa T and Ueda M 2009 Phys. Rev. Lett. 102 250602
[10]Mandal D, Quan H T and Jarzynski C 2013 Phys. Rev. Lett. 111 030602
[11]Berut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R and Lutz E 2012 Nature 483 187
[12]Kieu, T D 2004 Phys. Rev. Lett. 93 140403
[13]Quan H T, Wang Y D, Liu Y X, Sun C P and Nori F 2006 Phys. Rev. Lett. 97 180402
[14]Mandal D and Jarzynski C 2012 Proc. Natl. Acad. Sci. USA 109 11641
[15]Toyabe S, Sagawa T, Ueda M, Muneyuki E and Sano M 2010 Nat. Phys. 6 988
[16]Koski J V, Maisi V F, Sagawa T and Pekola J P 2014 Phys. Rev. Lett. 113 030601
[17]Barato A C and Seifert U 2013 Europhys. Lett. 101 60001
[18]Koski J V, Maisi V F, Pekola J P and Averin D V 2014 Proc. Natl. Acad. Sci. USA 111 13786
[19]Koski J V, Kutvonen A, Khaymovich I M, Ala-Nissila T and Pekola J P 2015 Phys. Rev. Lett. 115 260602
[20]Deffner S 2013 Phys. Rev. E 88 062128
[21]Chapman A and Miyake A 2015 Phys. Rev. E 92 062125
[22]Park J J, Kim K H, Sagawa T and Kim S W 2013 Phys. Rev. Lett. 111 230402
[23]Quan H T, Liu Y X, Sun C P and Nori F 2007 Phys. Rev. E 76 031105
[24]Ito S and Sagawa T 2013 Phys. Rev. Lett. 111 180603
[25]Zurek W H 2003 Phys. Rev. A 67 012320
Related articles from Frontiers Journals
[1] Mengmeng Xi, Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Coulomb Thermoelectric Drag in Four-Terminal Mesoscopic Quantum Transport[J]. Chin. Phys. Lett., 2021, 38(8): 080501
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 080501
[3] Xiaowei Liu, Jingyuan Guo, Zhibing Li. Critical One-Dimensional Absorption-Desorption with Long-Ranged Interaction[J]. Chin. Phys. Lett., 2019, 36(8): 080501
[4] Yu-Hong Zhang, Hui Liu, Ying-Rong Han, Ya-Fei Chen, Su-Hua Zhang, Yong Zhan. Temperature Impacts on Transient Receptor Potential Channel Mediated Calcium Oscillations in Astrocytes[J]. Chin. Phys. Lett., 2017, 34(9): 080501
[5] Nan-Xian Chen, Bo-Hua Sun. Note on Divergence of the Chapman–Enskog Expansion for Solving Boltzmann Equation [J]. Chin. Phys. Lett., 2017, 34(2): 080501
[6] SU Hao, SHI Zhi-Cheng, HE Ji-Zhou. Optimal Performance Analysis of a Three-Terminal Thermoelectric Refrigerator with Ideal Tunneling Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(10): 080501
[7] WEN Fa-Kai, YANG Zhan-Ying, CUI Shuai, CAO Jun-Peng, YANG Wen-Li. Spectrum of the Open Asymmetric Simple Exclusion Process with Arbitrary Boundary Parameters[J]. Chin. Phys. Lett., 2015, 32(5): 080501
[8] ZHOU Zong-Li, LI Min, YE Jian, LI Dong-Peng, LOU Ping, ZHANG Guo-Shun. The Heisenberg Model after an Interaction Quench[J]. Chin. Phys. Lett., 2014, 31(10): 080501
[9] LI Cong, ZHANG Yan-Chao, HE Ji-Zhou. A Nanosize Quantum-Dot Photoelectric Refrigerator[J]. Chin. Phys. Lett., 2013, 30(10): 080501
[10] Roumen Tsekov, Marga C. Lensen. Brownian Motion and the Temperament of Living Cells[J]. Chin. Phys. Lett., 2013, 30(7): 080501
[11] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 080501
[12] Clóves G. Rodrigues. Onset for the Electron Velocity Overshoot in Indium Nitride[J]. Chin. Phys. Lett., 2012, 29(12): 080501
[13] XIAO Yao, HUA Da-Yin. Promotion of Cooperation in a Spatial Public Goods Game with Long Range Learning and Mobility[J]. Chin. Phys. Lett., 2012, 29(11): 080501
[14] WU An-Cai . Percolation of Mobile Individuals on Weighted Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(11): 080501
[15] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 080501
Viewed
Full text


Abstract