Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 098501    DOI: 10.1088/0256-307X/30/9/098501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Efficient Green Organic Light-Emitting Devices Based on a Solution-Processable Starburst Molecule
ZHANG Xin-Wen1**, WANG Jian-Yun1, ZHAO Ling-Ling1, GUO Xin1, LAI Wen-Yong1**, HUANG Wei1,2
1Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023
2Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816
Cite this article:   
ZHANG Xin-Wen, WANG Jian-Yun, ZHAO Ling-Ling et al  2013 Chin. Phys. Lett. 30 098501
Download: PDF(615KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We develop high efficiency solution-processed pure green organic light-emitting devices using a starburst molecule 7,7',7"-(5,5,10,10,15,15-hexahexyl-10, 15-dihydro-5H-diindeno[1, 2-a:1', 2'-c]fluorene-2,7,12-triyl)tris(4-(4-(9H-carbazol-9-yl)phenyl)benzo[c][1,2,5]thiadiazole) (TRcz) doped 2-methyl-9,10-di(2-naphthyl)anthracene (MADN) as the emitting layers. The electroluminescence properties of the devices with different doping concentrations are investigated. With the increasing doping concentration from 0.5wt% to 5wt%, the maximum efficiency changes from 4.8 cd/A to 8.4 cd/A. Under the optimal concentration of 4wt%, the device shows pure green emission at 516 nm with a chromaticity coordinate of (0.30, 0.59) as well as a high brightness of 19900 cd/m2 and a high efficiency of 10.1 cd/A, which are better than 11490 cd/m2 and 4.2 cd/A obtained in the undoped device.
Received: 05 June 2013      Published: 21 November 2013
PACS:  85.60.Jb (Light-emitting devices)  
  78.60.Fi (Electroluminescence)  
  78.55.-m (Photoluminescence, properties and materials)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/098501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/098501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xin-Wen
WANG Jian-Yun
ZHAO Ling-Ling
GUO Xin
LAI Wen-Yong
HUANG Wei
[1] Jeong J, Mascaro D and Blair S 2011 Org. Electron. 12 2095
[2] Doh Y J, Park J S, Jeon W S, Pode R and Kwon J H 2012 Org. Electron. 13 586
[3] Wang D D, Wu Z X, Zhang X W, Jiao B, Liang S X, Wang D W, He R L and Hou X 2010 Org. Electron. 11 641
[4] Zhang X W, Wu Z X, Jiao B, Wang D D, Wang D W and Hou X 2012 Displays 33 129
[5] Ding Z C, Xing R B, Fu Q A, Ma D G and Han Y C 2011 Org. Electron. 12 703
[6] Pardo D A, Jabbour G E and Peyghambarian N 2000 Adv. Mater. 12 1249
[7] Duan L A, Hou L D, Lee T W, Qiao J A, Zhang D Q, Dong G F, Wang L D and Qiu Y 2010 J. Mater. Chem. 20 6392
[8] Gong X, Ma W L, Ostrowski J C, Bazan G C, Moses D and Heeger A J 2004 Adv. Mater. 16 615
[9] Zhu W G, Mo Y Q, Yuan M, Yang W and Cao Y 2002 Appl. Phys. Lett. 80 2045
[10] Chen Z, Jiang C Y, Niu Q L, Peng J B and Cao Y 2008 Org. Electron. 9 1002
[11] Kim H, Byun Y, Das R R, Choi B K and Ahn P S 2007 Appl. Phys. Lett. 91 093512
[12] Lai W Y, Xia R D, He Q Y, Levermore P A, Huang W and Bradley D D C 2009 Adv. Mater. 21 355
[13] Zhen C G, Chen Z K, Liu Q D, Dai Y F, Shin R Y C, Chang S Y and Kieffer J 2009 Adv. Mater. 21 2425
[14] Culligan S W, Geng Y H, Chen S H, Klubek K, Vaeth K M and Tang C W 2003 Adv. Mater. 15 1176
[15] Mishra A, Periasamy N, Patankar M P and Narasimhan K L 2005 Dyes Pigm. 66 89
[16] Ryu D W, Kim K S, Choi C K, Park Y I, Kang I N and Park J W 2007 Curr. Appl. Phys. 7 396
[17] Zhou Y, He Q G, Yang Y, Zhong H Z, He C, Sang G Y, Liu W, Yang C H, Bai F L and Li Y F 2008 Adv. Funct. Mater. 18 3299
[18] Qiao J, Wang L D, Xie J F, Lei G T, Wu G S and Qiu Y 2005 Chem. Commun. 4560
[19] Lai W Y, He Q Y, Zhu R, Chen Q Q and Huang W 2008 Adv. Funct. Mater. 18 265
[20] Lai W Y, Zhu R, Fan Q L, Hou L T, Cao Y and Huang W 2006 Macromolecules 39 3707
[21] Lai W Y, Chen Q Q, He Q Y, Fan Q L and Huang W 2006 Chem. Commun. 18 1959
[22] Liu F, Lai W Y, Tang C, Wu H B, Chen Q Q, Peng B, Wei W, Huang W and Cao Y 2008 Macromol. Rapid Commun. 29 659
[23] Lai W Y, Xia R D, Bradley D D C and Huang W 2010 Chem. Eur. J. 16 8471
[24] Xia R D, Lai W Y, Levermore P A, Huang W and Bradley D D C 2009 Adv. Funct. Mater. 19 2844
[25] Wang D D, Wu Z X, Zhang X W, Jiao B, Wang D W and Hou X 2010 Chin. Sci. Bull. 55 986
[26] Ho M H, Hsieh M T, Lin K H, Chen T M, Chen J F and Chen C 2009 Appl. Phys. Lett. 94 023306
[27] Lee M T, Liao C H, Tsai C H and Chen C H 2005 Adv. Mater. 17 2493
[28] Chin B D, Suh M C, Kim M H, Lee S T, Kim H D and Chung H K 2005 Appl. Phys. Lett. 86 133505
[29] Chang M Y, Han Y K, Wang C C, Lin S C, Tsai Y J and Huang W Y 2008 J. Electrochem. Soc. 155 J365
[30] Liu J, Wang J, Huang S J, Chen H A and He G F 2013 Phys. Status Solidi A 210 489
[31] Su W M, Li W L, Hong Z R, Li M T, Yu T Z, Chu B, Li B, Zhang Z Q and Hu Z Z 2005 Appl. Phys. Lett. 87 213501
[32] Chu T Y, Chen J F, Chen S Y, Chen C J and Chen C H 2006 Appl. Phys. Lett. 89 053503
[33] Bulovic V, Shoustikov A, Baldo M A, Bose E, Kozlov V G, Thompson M E and Forrest S R 1998 Chem. Phys. Lett. 287 455
[34] Bulovic V, Deshpande R, Thompson M E and Forrest S R 1999 Chem. Phys. Lett. 308 317
Related articles from Frontiers Journals
[1] Jingrui Ma, Haodong Tang, Xiangwei Qu, Guohong Xiang, Siqi Jia, Pai Liu, Kai Wang, and Xiao Wei Sun. A $dC/dV$ Measurement for Quantum-Dot Light-Emitting Diodes[J]. Chin. Phys. Lett., 2022, 39(12): 098501
[2] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 098501
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 098501
[4] Xue-Hui Tao, Yong Yang. Theoretical Modeling of Luminous Efficacy for High-Power White Light-Emitting Diodes[J]. Chin. Phys. Lett., 2017, 34(3): 098501
[5] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 098501
[6] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 098501
[7] Qian-Qian Yu, Xu Zhang, Jing-Xuan Bi, Guan-Ting Liu, Qi-Wen Zhang, Xiao-Ming Wu, Yu-Lin Hua, Shou-Gen Yin. Efficiency of Blue Organic Light-emitting Diodes Enhanced by Employing an Exciton Feedback Layer[J]. Chin. Phys. Lett., 2016, 33(08): 098501
[8] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 098501
[9] Yao Xu, Yu-Ting Zhang, Zhi-Qi Kou, Shuang Cheng, Sheng-Li Bu. A Mixed Host Emitting Interlayer Based on CBP:TPBi in Green Phosphorescent Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(04): 098501
[10] Jun Sun, Min Xi, Zi-Sheng Su, Hai-Xiao He, Mi Tian, Hong-Yan Li, Hong-Ke Zhang, Tao Mao, Yu-Xiang Zhang. Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex[J]. Chin. Phys. Lett., 2016, 33(03): 098501
[11] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 098501
[12] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 098501
[13] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 098501
[14] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 098501
[15] LIU Wei, LIU Guo-Hong, LIU Yong, LI Bao-Jun, ZHOU Xiang. Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer[J]. Chin. Phys. Lett., 2015, 32(07): 098501
Viewed
Full text


Abstract