CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Microwave Transmissions through Superconducting Coplanar Waveguide Resonators with Different Coupling Configurations |
ZHANG Si-Lei1,3, LI Hai-Jie1, WEI Lian-Fu1,2**, FANG Yu-Rong4, WANG Yi-Wen1, ZHOU Pin-Jia1, WEI Qiang1, CAO Chun-Hai4, XIONG Xiang-Zheng3** |
1Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031 2State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-sen University, Guangzhou 510275 3Institute of Electromagnetic Field and Microwave Technology, Southwest Jiaotong University, Chengdu 610031 4Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093
|
|
Cite this article: |
ZHANG Si-Lei, LI Hai-Jie, WEI Lian-Fu et al 2013 Chin. Phys. Lett. 30 088401 |
|
|
Abstract We design and fabricate two types of superconducting niobium coplanar waveguide microwave resonators with different coupling capacitors on high purity Si substrates. Their microwave transmissions are measured at 20 mK. It is found that these two types of resonators possess significantly different loaded quality factors; one is 5.6×103 and the other is 4.0×104. The measured data are fitted well by classical ABCD matrix approach and consequently the coupling capacitances are determined. It is found that the transmission peak deviates from the standard Lorentizian with a frequency broadening.
|
|
Received: 11 April 2013
Published: 21 November 2013
|
|
PACS: |
84.40.Az
|
(Waveguides, transmission lines, striplines)
|
|
74.78.Na
|
(Mesoscopic and nanoscale systems)
|
|
85.25.Am
|
(Superconducting device characterization, design, and modeling)
|
|
|
|
|
[1] Day P K, LeDuc H G, Mazin B A, Vayonakis A and Zmuidzinas J 2003 Nature 425 817 [2] Mazin B A, Day P K, LeDuc H G, Vayonakis A and Zmuidzinas J 2002 Proc. SPIE 4849 283 [3] Zmuidzinas J and Richards P L 2004 Proc. IEEE 92 1597 [4] Mazin B A, Eckart M E, Bumble B, Golwala S, Day P, Gao J and Zmuidzinas J 2008 J. Low Temp. Phys. 151 537 [5] Vardulakis G, Withington S, Goldie D J and Glowacka D M 2008 Meas. Sci. Technol. 19 015509 [6] Siddiqi I, Vijay R, Pierre F, Wilson C M, Metcalfe M, Rigetti C, Frunzio L and Devoret M H 2004 Phys. Rev. Lett. 93 207002 [7] Tholén E, Ergül A, Doherty E, Weber F, Grégis F and Haviland D 2007 Appl. Phys. Lett. 90 253509 [8] Yurke B, Corruccini L R, Kaminsky P G, Rupp L W, Smith A D, Silver A H, Simon R W and Whittaker E A 1989 Phys. Rev. A 39 2519 [9] Castellanos-Beltran M and Lehnert K 2007 Appl. Phys. Lett. 91 083509 [10] Frunzio L, Wallraff A, Schuster D, Majer J and Schoelkopf R 2005 IEEE Trans. Appl. Supercond. 15 860 [11] Zhang M and Wei L F 2012 Chin. Phys. Lett. 29 080301 [12] Zhao N, Liu S J, Li H, Li F T and Chen W 2012 Chin. Phys. Lett. 29 088401 [13] G?ppl M, Fragner A, Baur M, Bianchetti R, Filipp S, Fink J M, Leek P J, Puebla G, Steffen L and Wallraff A 2008 J. Appl. Phys. 104 113904 [14] Pozar D M 1993 Microwave Engineering (Addison-Wesley Publishing Company) [15] Gevorgian S, Linnér L J P and Kollberg E L 1995 IEEE Trans. Microwave Theory Tech. 43 772 [16] Watanabe K, Yoshida K, Aoki T and Kohjiro S 1994 Jpn. J. Appl. Phys. 33 5708 [17] Sage J M, Bolkhovsky V, Oliver W D, Turek B and Welander P B 2011 J. Appl. Phys. 109 063915 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|