Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 084701    DOI: 10.1088/0256-307X/30/8/084701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
The Shock Wave Refraction in Supersonic Planar Mixing Layers
ZHANG Yun-Long, WANG Bing**, ZHANG Hui-Qiang
School of Aerospace, Tsinghua University, Beijing 100084
Cite this article:   
ZHANG Yun-Long, WANG Bing, ZHANG Hui-Qiang 2013 Chin. Phys. Lett. 30 084701
Download: PDF(768KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We analyze the shock wave refraction in a spatially developing shocked mixing layer by means of direct numerical simulation. Both regular and Mach reflections can occur depending on the relative strength of the induced shock wave over the vorticity of interacting vortex in the mixing layer. The stronger incident shock wave frequently refracts Mach reflection. The shock polar diagram is used to determine the shock wave refraction patterns. Moreover, the vortices are deformed and compressed by the shock wave, and their vorticities are increased. The interaction of shock wave and coherent structure can be helpful to enhance the mixing process.
Received: 01 April 2013      Published: 21 November 2013
PACS:  47.40.Nm (Shock wave interactions and shock effects)  
  47.27.De (Coherent structures)  
  47.27.ek (Direct numerical simulations)  
  47.51.+a (Mixing?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/084701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/084701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yun-Long
WANG Bing
ZHANG Hui-Qiang
[1] Lu P J and Wu K C 1991 Phys. Fluids 3 3046
[2] Yiannis A, Juan H A and George B 2000 Annu. Rev. Fluid Mech. 32 309
[3] Hermanson J C and Cetegen B M 2000 Phys. Fluids 12 1210
[4] Seiner J M, Dash S M and Kenzakowski D C 2001 J. Propul. Power 17 1273
[5] Bai J S, Li P and Wang T et al 2009 Chin. Phys. B 18 1127
[6] G énin F and Menon S 2009 Comput. Fluids 12 8
[7] Wang L and Lu X Y 2011 Chin. Phys. Lett. 28 034703
[8] Wang L and Lu X Y 2011 Chin. Phys. Lett. 28 064702
[9] Ren Y X, Liu M and Zhang H X 2003 J. Comput. Phys. 192 365
[10] Goebel S G, Dutton J C and Krier H et al 1990 Exp. Fluids 8 263
Related articles from Frontiers Journals
[1] LI Jian, NING Jian-Guo, ZHAO Hui, HAO Li, WANG Cheng. Numerical Investigation on the Propagation Mechanism of Steady Cellular Detonations in Curved Channels[J]. Chin. Phys. Lett., 2015, 32(4): 084701
[2] WANG Xing, MA Tian-Bao, NING Jian-Guo. A Pseudo Arc-Length Method for Numerical Simulation of Shock Waves[J]. Chin. Phys. Lett., 2014, 31(03): 084701
[3] SONG Hai-Feng, TIAN Ming-Feng, LIU Hai-Feng, SONG Hong-Zhou, ZHANG Gong-Mu. Theoretical Study on Equation of State of Porous Mo and Sn[J]. Chin. Phys. Lett., 2014, 31(1): 084701
[4] HAN Wen-Hu, WANG Cheng, NING Jian-Guo. Propagation Mechanism of Cylindrical Cellular Detonation[J]. Chin. Phys. Lett., 2012, 29(10): 084701
[5] L. P. Singh, S. D. Ram**, D. B. Singh . Analytical Solution of the Blast Wave Problem in a Non-Ideal Gas[J]. Chin. Phys. Lett., 2011, 28(11): 084701
[6] LIU Shi-Jie**, LIN Zhi-Yong, SUN Ming-Bo, LIU Wei-Dong . Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure[J]. Chin. Phys. Lett., 2011, 28(9): 084701
[7] SONG Hai-Feng, LIU Hai-Feng, ZHANG Guang-Cai, ZHAO Yan-Hong. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading[J]. Chin. Phys. Lett., 2009, 26(6): 084701
[8] WU Jing-He, YE Song, HU Dong, YANG Xiang-Dong. Spectral Study of Effects of Aluminium Nanoparticles on Fast Reaction of Nitromethane[J]. Chin. Phys. Lett., 2008, 25(3): 084701
[9] SHI Yi-Na, QIN Cheng-Sen. Theoretical Prediction of Asymmetrical Jet Formation in Two-Metallic-Flow Collision[J]. Chin. Phys. Lett., 2007, 24(8): 084701
[10] BAI Jing-Song, LI Ping, TAN Duo-Wang. Simulations of the Instability Experiments in Stratified Cylindrical Shells[J]. Chin. Phys. Lett., 2006, 23(7): 084701
[11] ZHANG Ping, BIAN Bao-Min, LI Zhen-Hua. Fibre-Coupling Zig-Zag Beam Deflection Technology for Investigation of Attenuation Process of Laser-Induced Shock Waves[J]. Chin. Phys. Lett., 2005, 22(9): 084701
[12] GAO Zhi, HU Li-Min. Effects of the Spectral Line Broadened Model on the Performance of a Flowing Chemical Oxygen-Iodine Laser[J]. Chin. Phys. Lett., 2002, 19(11): 084701
Viewed
Full text


Abstract