Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 084201    DOI: 10.1088/0256-307X/30/8/084201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Influence of Feedback Level on Laser Polarization in Polarized Optical Feedback
WU Yun, TAN Yi-Dong, ZHANG Shu-Lian**, LI Yan
The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084
Cite this article:   
WU Yun, TAN Yi-Dong, ZHANG Shu-Lian et al  2013 Chin. Phys. Lett. 30 084201
Download: PDF(703KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influence of feedback level (or the amplitude of feedback light) on laser polarization in polarized optical feedback is investigated. A polarizer is placed in the feedback cavity to form the polarized feedback, and an attenuator is placed in the feedback cavity to tune the feedback level. The laser intensity and polarization vary dramatically at different transmissivities of the attenuator. According to the experimental phenomenon, the range of the attenuator transmissivity is divided into three zones: the flipping zone, monostable zone, and bistable zone. In the monostable zone, the laser polarization is always perpendicular to the axis of the polarizer in the feedback cavity. This may provide an effective way to choose or control laser polarization. A theoretical model based on the self-consistency of laser oscillation is presented to analyze the experimental results.
Received: 14 May 2013      Published: 21 November 2013
PACS:  42.25.Lc (Birefringence)  
  42.55.Lt (Gas lasers including excimer and metal-vapor lasers)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.62.-b (Laser applications)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/084201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/084201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Yun
TAN Yi-Dong
ZHANG Shu-Lian
LI Yan
[1] King P G R and Steward G J 1963 New Sci. 17 180
[2] Bearden A, O'Neill M, Osborne L and Wong T 1993 Opt. Lett. 18 238
[3] Alvarado T, Julius J and Caesar S 2005 Appl. Opt. 44 7287
[4] Groot P J and Gallatin G M 1989 Opt. Lett. 14 165
[5] Fei L, Zhang S L, Li Y and Zhu J 2005 Opt. Express 13 3117
[6] Stephan G and Hugon D 1985 Phys. Rev. Lett. 55 703
[7] Besnard P, Jia X L, Dalgliesh L, May A D and Stéphan D 1993 J. Opt. Soc. Am. B 10 1605
[8] Sciamanna M, Panajotov K, Thienpont H, Veretennicoff I, Megret P and Blondel M 2003 Opt. Lett. 28 1543
[9] Fei L G, Zhang S L, Wang X J 2004 Chin. Phys. Lett. 21 1944
[10] Mao W and Zhang S L 2006 Chin. Phys. 15 340
[11] Mao W, Zhang S L, Zhang L Q, Zhu J and Li Y 2006 Chin. Phys. Lett. 23 1188
[12] Tkach R W and Chraplyvy A R 1986 J. Lightwave Technol. 4 1655
[13] Wang W, Grattan K, Palmer A and Boyle W 1994 J. Lightwave Technol. 12 1577
Related articles from Frontiers Journals
[1] Hai-Sha Niu, Lian-Qing Zhu, Jian-Jun Song. Laser Intensity Variation in Amplitude and Phase Induced by Elliptically Polarized Feedback[J]. Chin. Phys. Lett., 2018, 35(5): 084201
[2] Quan-Zhou Zhao, De-Long Zhang. Transmission Spectral Characteristics of Photonic Crystals Milled in Annealed Proton-Exchange LiNbO$_3$ Waveguide[J]. Chin. Phys. Lett., 2017, 34(3): 084201
[3] WU Yun, TAN Yi-Dong. Birefringence Optical Feedback with a Folded Cavity in HeNe Laser[J]. Chin. Phys. Lett., 2013, 30(1): 084201
[4] ZHAO Shuang, WU Chong-Qing, WANG Yong-Jun. Polarization Dependence of Linewidth Enhancement Factor in Semiconductor Optical Amplifier and Its Implication for Nonlinear Polarization Rotation[J]. Chin. Phys. Lett., 2009, 26(10): 084201
[5] REN Wen-Yi, ZHANG Chun-Min, MU Ting-Kui. Application of Equivalent Air Gap Method in Uniaxial Crystal Plate[J]. Chin. Phys. Lett., 2009, 26(8): 084201
[6] LIN Yan-Ting, REN Bo, ZHAO Xiang-Yong, WANG Fei-Fei, WANG Yao-Jin, XU Hai-Qing, LIN Di, LUO Hao-Su. Optical Dispersion Behavior and Band Gap Energy of Relaxor Ferroelectric 0.92Pb(Mg1/3Nb2/3)O3-0.08PbTiO3 Single Crystal[J]. Chin. Phys. Lett., 2009, 26(7): 084201
[7] REN Cheng, TAN Yi-Dong, ZHANG Shu-Lian. Generation and Modulation of Phase Difference of Output Intensities in a Feedback Nd:YAG Laser with an Extracavity Waveplate Rotated[J]. Chin. Phys. Lett., 2009, 26(3): 084201
[8] LI Zheng-Yong, WU Chong-Qing, SHUM Ping, DONG Hui. Matrix-Based Polarization Analysis and Application of Semiconductor Optical Amplifiers[J]. Chin. Phys. Lett., 2008, 25(11): 084201
[9] RAO Lian-Zhou, WANG Zong-Chi, ZHENG Xiao-Xia. Tightly Focusing of Circularly Polarized Vortex Beams through a Uniaxial Birefringent Crystal[J]. Chin. Phys. Lett., 2008, 25(9): 084201
[10] PAN Xu, WANG Chang-Shun, ZHANG Xiao-Qiang. Inverse Relaxation of Photoinduced Birefringence in a Liquid-Crystalline Azobenzene Side-Chain Polymer[J]. Chin. Phys. Lett., 2008, 25(9): 084201
[11] ZHAO Shuang, WU Fu-Quan, ZHANG Dong-Sheng, ZHAO Xin, WANG Jin-Xi, XUE Mei, ZHONG Wei-Gang. Temperature Influence on Divergence Angles of Quartz Crystal Wollaston Prism[J]. Chin. Phys. Lett., 2008, 25(7): 084201
[12] YU Xiao-Tong, WEI Ze-Yong, LI Hong-Qiang, ZHANG Ye-Wen, CHEN Hong. Negative Refraction in One-Dimensional Photonic Crystals with Tilted Interface[J]. Chin. Phys. Lett., 2007, 24(12): 084201
[13] WEI Lai, TENG Xue-Lei, LU Ming, ZHAO You-Yuan, MA De-Wang, DING Jian-Dong. Photoinduced Birefringence and Broadband All-Optical Photonic Switch in a Bacteriorhodopsin/Polymer Composite Film[J]. Chin. Phys. Lett., 2007, 24(12): 084201
[14] ZHOU Lu-Fei, ZHANG Shu-Lian, GUO Hong, REN Zhou. Precision Controlling of Frequency Difference for Elastic-Stress Birefringence He--Ne Dual-Frequency Lasers[J]. Chin. Phys. Lett., 2007, 24(11): 084201
[15] Jing QIN, Norihiro UMEDA. Near-Field Birefringence Response of Liquid Crystal Molecules in Thickness Direction of Liquid Crystal Thin Film Orientated by Shear Force[J]. Chin. Phys. Lett., 2007, 24(10): 084201
Viewed
Full text


Abstract