GENERAL |
|
|
|
|
The Enhanced Role of Shallow-Trench Isolation in Ionizing Radiation Damage of Narrow Width Devices in 0.2 μm Partially-Depleted Silicon-on-Insulator Technology |
HUANG Hui-Xiang1,2**, BI Da-Wei1, PENG Chao1,2, ZHANG Yan-Wei1, ZHANG Zheng-Xuan1 |
1The State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 2Graduate University of the Chinese Academic of Sciences, Beijing 100049
|
|
Cite this article: |
HUANG Hui-Xiang, BI Da-Wei, PENG Chao et al 2013 Chin. Phys. Lett. 30 080701 |
|
|
Abstract An anomalous total dose effect is observed in narrow-width devices fabricated in a 0.2 μm partially-depleted silicon-on-insulator (SOI) technology. The previous radiation-induced narrow channel effect manifests itself with obvious threshold voltage shift after the transistors are subjected to total dose radiation in bulk technology. Nevertheless, a sharply increasing off-state leakage current dominates the total dose effects in narrow devices of this partially-depleted SOI technology instead of threshold voltage shifts. A radiation-induced positive charge trapping model is introduced to understand this phenomenon. The enhanced role of shallow-trench oxide induced by compressive mechanical stress in narrow devices is discussed in detail in terms of modification of the edge impurity density and charge trapping characteristics, which affect the total dose sensitivity.
|
|
Received: 25 April 2013
Published: 21 November 2013
|
|
PACS: |
07.87.+v
|
(Spaceborne and space research instruments, apparatus, and components (satellites, space vehicles, etc.))
|
|
85.30.-z
|
(Semiconductor devices)
|
|
|
|
|
[1] Paillet P, Gaillardin M, Ferlet-Cavrois V, Torres A, Faynot O, Jahan C, Tosti L and Cristoloveanu S 2005 IEEE Trans. Nucl. Sci. 52 2345 [2] Gaillardin M, Paillet P, Ferlet-Cavrois V, Faynot O, Jahan C and Cristoloveanu S 2006 IEEE Trans. Nucl. Sci. 53 3158 [3] Mamouni F E, Bawedin M, Zhang E X, Schrimpf R D, Fleetwood D M and Cristoloveanu S 2010 IEEE Trans. Nucl. Sci. 57 3054 [4] Faccio F and Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413 [5] Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R, Paillet P and Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522 [6] Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M and Zou S C 2011 Chin. Phys. Lett. 28 070701 [7] Ning B X, Bi D W, Huang H X, Zhang Z X, Hu Z Y, Chen M and Zou S C 2013 Microelectron. Reliab. 53 259 [8] Arora R, Zhang E X, Seth S, Cressler J D, Fleetwood D M, Schrimpf R D, Rosa G L, Sutton A K, Nayfeh H M and Freeman G 2011 IEEE Trans. Nucl. Sci. 58 2830 [9] Shaneyfelt M R, Dodd P E, Draper B L and Flores R S 1998 IEEE Trans. Nucl. Sci. 45 2584 [10] Rezzak N, Schrimpf R D, Alles M L, Zhang E X, Fleetwood D M and Li Y A 2010 IEEE Trans. Nucl. Sci. 57 3288 [11] Rezzak N, Maillard P, Schrimpf R D, Alles M L, Fleetwood D M and Li Y F 2012 Microelectron. Reliab. 52 2521 [12] Kasama K, Toyokawa F, Tsukiji M and Sakamoto M 1986 IEEE Trans. Nucl. Sci. 33 1210 [13] Li R and Yu L 2007 Semicond. Sci. Technol. 22 1292 [14] Kim D, Lee S, Oh T K, Cha S Y, Hong S J and B Kang 2011 Microelectron. Eng. 88 882 [15] Hsieh C Y and Chen M J 2008 IEEE Trans. Electron Devices 55 844 [16] Fleetwood D M 1990 J. Appl. Phys. 67 580 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|