GENERAL |
|
|
|
|
From Nothing to Something: Discrete Integrable Systems |
LOU Sen-Yue1,2**, LI Yu-Qi1,2, TANG Xiao-Yan3 |
1Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062 2Faculty of Science, Ningbo University, Ningbo 315211 3Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
|
|
Cite this article: |
LOU Sen-Yue, LI Yu-Qi, TANG Xiao-Yan 2013 Chin. Phys. Lett. 30 080202 |
|
|
Abstract Chinese ancient sage Laozi said that everything comes from 'nothing'. Einstein believes the principle of nature is simple. Quantum physics proves that the world is discrete. And computer science takes continuous systems as discrete ones. This report is devoted to deriving a number of discrete models, including well-known integrable systems such as the KdV, KP, Toda, BKP, CKP, and special Viallet equations, from 'nothing' via simple principles. It is conjectured that the discrete models generated from nothing may be integrable because they are identities of simple algebra, model-independent nonlinear superpositions of a trivial integrable system (Riccati equation), index homogeneous decompositions of the simplest geometric theorem (the angle bisector theorem), as well as the M?bious transformation invariants.
|
|
Received: 11 April 2013
Published: 21 November 2013
|
|
PACS: |
02.30.Ik
|
(Integrable systems)
|
|
02.90.+p
|
(Other topics in mathematical methods in physics)
|
|
02.30.Jr
|
(Partial differential equations)
|
|
|
|
|
[1] Boltz W G 1993 Lao tzu Tao te ching. In Early Chinese Texts: A Bibliographical Guide ed Michael Loewe (Berkeley: University of California, Institute of East Asian Studies) p 269 [2] Zhu X (1130.9.15–1200.4.23) Zhu Xi Ji (Sichuan Edition) vol 37 p 1660 (in Chinese) [3] Halburd R G, Nijhoff F W, Noumi M, Quispel G R W, Ragnisco O 2009 Scientific Programme Reports of Isaac Newton Institute for Mathematical Science, Discrete Integrable Systems http://www.newton.ac.uk/reports/0809/dis.pdf [4] Crighton D G 1995 Acta Appl. Math. 39 39 [5] Korteweg D J and de Vries G 1895 Philos. Mag. 39 422 Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240 Goldstein R E and Petrich D M 1992 Phys. Rev. Lett. 69 555 Kim S P and Schubert C 2011 arXiv:1110.0900 Fogaca D A, Navarra F S and Filho L G F 2011 arXiv:1106.5959 Forozani G and Mohammadi M 2011 arXiv:1106.3642 [physics.plasm-ph] [6] Nijhoff F and Capel H 1995 Acta Appl. Math. 39 133 Hu X B and Clarkson P A 1995 J. Phys. A: Math. Gen. 28 5009 Schiff J 2003 Nonlinearity 16 257 [7] Schief W K 2003 J. Nonlinear Math. Phys. 10 Suppl. 2 194 [8] Atkinson J and Joshi N 2010 arXiv:1010.1916v1 [nlin.SI] [9] Adler V E, Bobenko A I and Suris Y B 2003 Commun. Math. Phys. 233 513 Adler V E, Bobenko A I and Suris Y B 2009 Funct. Anal. Appl. 43 3 Adler V E, Bobenko A I and Suris Y B 2010 Int. Math. Res. Not. 11 573 [10] Viallet C 2009 Glasgow Math. J. 51A 157 [11] Shinzawa N 2000 J. Phys. A: Math. Gen. 33 3957 [12] Lou S Y, Li Y Q and Tang X Y 2012 Discrete integrable systems from index homogeneous decompositions of the angle bisector theorem (Preprint) [13] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522 Conte R 1989 Phys. Lett. A 140 383 [14] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209 Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607 Lou S Y 1997 J. Phys. A: Math. Gen. 30 4803 Lou S Y 1996 Phys. Scr. 54 428 Lou S Y and Hu X B 1993 Chin. Phys. Lett. 10 577 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|