Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 080202    DOI: 10.1088/0256-307X/30/8/080202
GENERAL |
From Nothing to Something: Discrete Integrable Systems
LOU Sen-Yue1,2**, LI Yu-Qi1,2, TANG Xiao-Yan3
1Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
2Faculty of Science, Ningbo University, Ningbo 315211
3Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
LOU Sen-Yue, LI Yu-Qi, TANG Xiao-Yan 2013 Chin. Phys. Lett. 30 080202
Download: PDF(486KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Chinese ancient sage Laozi said that everything comes from 'nothing'. Einstein believes the principle of nature is simple. Quantum physics proves that the world is discrete. And computer science takes continuous systems as discrete ones. This report is devoted to deriving a number of discrete models, including well-known integrable systems such as the KdV, KP, Toda, BKP, CKP, and special Viallet equations, from 'nothing' via simple principles. It is conjectured that the discrete models generated from nothing may be integrable because they are identities of simple algebra, model-independent nonlinear superpositions of a trivial integrable system (Riccati equation), index homogeneous decompositions of the simplest geometric theorem (the angle bisector theorem), as well as the M?bious transformation invariants.
Received: 11 April 2013      Published: 21 November 2013
PACS:  02.30.Ik (Integrable systems)  
  02.90.+p (Other topics in mathematical methods in physics)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/080202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/080202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LOU Sen-Yue
LI Yu-Qi
TANG Xiao-Yan
[1] Boltz W G 1993 Lao tzu Tao te ching. In Early Chinese Texts: A Bibliographical Guide ed Michael Loewe (Berkeley: University of California, Institute of East Asian Studies) p 269
[2] Zhu X (1130.9.15–1200.4.23) Zhu Xi Ji (Sichuan Edition) vol 37 p 1660 (in Chinese)
[3] Halburd R G, Nijhoff F W, Noumi M, Quispel G R W, Ragnisco O 2009 Scientific Programme Reports of Isaac Newton Institute for Mathematical Science, Discrete Integrable Systems http://www.newton.ac.uk/reports/0809/dis.pdf
[4] Crighton D G 1995 Acta Appl. Math. 39 39
[5] Korteweg D J and de Vries G 1895 Philos. Mag. 39 422
Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
Goldstein R E and Petrich D M 1992 Phys. Rev. Lett. 69 555
Kim S P and Schubert C 2011 arXiv:1110.0900
Fogaca D A, Navarra F S and Filho L G F 2011 arXiv:1106.5959
Forozani G and Mohammadi M 2011 arXiv:1106.3642 [physics.plasm-ph]
[6] Nijhoff F and Capel H 1995 Acta Appl. Math. 39 133
Hu X B and Clarkson P A 1995 J. Phys. A: Math. Gen. 28 5009
Schiff J 2003 Nonlinearity 16 257
[7] Schief W K 2003 J. Nonlinear Math. Phys. 10 Suppl. 2 194
[8] Atkinson J and Joshi N 2010 arXiv:1010.1916v1 [nlin.SI]
[9] Adler V E, Bobenko A I and Suris Y B 2003 Commun. Math. Phys. 233 513
Adler V E, Bobenko A I and Suris Y B 2009 Funct. Anal. Appl. 43 3
Adler V E, Bobenko A I and Suris Y B 2010 Int. Math. Res. Not. 11 573
[10] Viallet C 2009 Glasgow Math. J. 51A 157
[11] Shinzawa N 2000 J. Phys. A: Math. Gen. 33 3957
[12] Lou S Y, Li Y Q and Tang X Y 2012 Discrete integrable systems from index homogeneous decompositions of the angle bisector theorem (Preprint)
[13] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
Conte R 1989 Phys. Lett. A 140 383
[14] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
Lou S Y 1997 J. Phys. A: Math. Gen. 30 4803
Lou S Y 1996 Phys. Scr. 54 428
Lou S Y and Hu X B 1993 Chin. Phys. Lett. 10 577
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 080202
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 080202
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 080202
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 080202
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 080202
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 080202
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 080202
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 080202
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 080202
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 080202
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 080202
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 080202
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 080202
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 080202
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 080202
Viewed
Full text


Abstract