CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea |
KONG Fang-Fang1, LIU Cong-Cong1, XU Jing-Kun1**, JIANG Feng-Xing1, LU Bao-Yang1, YUE Rui-Rui1, LIU Guo-Dong2, WANG Jian-Min2
|
1Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013
2School of Communication and Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013
|
|
Cite this article: |
KONG Fang-Fang, LIU Cong-Cong, XU Jing-Kun et al 2011 Chin. Phys. Lett. 28 037201 |
|
|
Abstract The thermoelectric performance of free-standing poly(3,4-ethylenedioythiophene): poly(styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion treated by different concentrations of urea are investigated in detail. The electrical conductivity, Seebeck coefficient and power factor of PEDOT:PSS films versus temperature are determined, respectively. It is found that both the electrical conductivity and Seebeck coefficient of PEDOT:PSS films are enhanced after treatment with urea. Conductivity could be enhanced from 8.16 to 63.13 S⋅cm−1, the Seebeck coefficient is increased from 14.47 to 20.7 µV⋅K−1 and the power factor is rises to 2.7 µW⋅m−1K−2 at 300 K.
|
Keywords:
72.20.Pa
72.80.Le
84.60.Bk
|
|
Received: 26 September 2010
Published: 28 February 2011
|
|
PACS: |
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
72.80.Le
|
(Polymers; organic compounds (including organic semiconductors))
|
|
84.60.Bk
|
(Performance characteristics of energy conversion systems; figure of merit)
|
|
|
|
|
[1] Tritt T M, Böttner H and Chen L D 2008 MRS Bull. 33 366
[2] Hiroshige Y, Ookawa M and Toshim N 2007 Synth. Meter. 157 467
[3] Hiroshige Y, Ookawa M and Toshim N 2006 Synth. Meter. 156 1341
[4] Lévesque I, Gao X et al 2005 Reacti. Funct. Poly. 65 23
[5] Lévesque I, Bertrand P O, Blouin N, Leclerc M et al 2007 Chem. Mater. 19 2128
[6] Taggart D K, Yang Y A, Kung S C, McIntire T M and Penner R M 2010 ACS Nano Lett. 11 125
[7] Heywang G and Jonas F 1992 Adv. Mater. 4 116
[8] Pei Q, Zuccafrello G, Ahlskog M and Inganas O 1994 Polymer 35 1347
[9] Groenendaal L, Jonas F, Freitag D, Pielartzik H and Reynolds J R 2000 Adv. Mater. 12 481
[10] Yakuphanoglu F and Senkal B F 2007 J. Phys. Chem. C 111 1840
[11] Carrasco P M, Cortazar M, Ochoteco E, Calahorra E and Pomposo J A 2007 Surf. Interface Anal. 39 26
[12] Jin S Cong S, Xue G, Xiong H, Mansdorf B and Cheng S Z D 2002 Adv. Mater. 14 1492
[13] Kaiser A B 1989 Phys. Rev. B 40 2806
[14] Lu B Y, Liu C C et al 2010 Chin. Phys. Lett. 27 057201
[15] Sun J, Yeh M L, Jung B J et al 2010 Macromolecules 43 2897
[16] Verbakel F, Meskers S and Janssen R 2006 Chem. Mater. 18 2707
[17] Meskers S, Duren J, Janssen R, Louwet F and Groenendaal L 2003 Adv. Mater. 15 613
[18] Yoo B, Dodabalapur A, Lee DC, Hanrath T and Korgel BA 2007 Appl. Phys. Lett. 90 072106
[19] Chen B, Cui T, Liu Y and Varahramyan K 2003 Solid-State Electron. 47 841
[20] Xia Y J and Ouyang J Y 2010 ACS Appl. Mater. Interfaces 2 474
[21] Chen Y, Kang K S, Han K J, Yoo K H and Kim Jaehwan 2009 Synth. Meter. 159 1701
[22] Hiroshige Y, Ookawa M and Toshima N 2007 Synth. Meter. 157 467
[23] Jiang F X, Xu J K, Lu B Y et al 2008 Chin. Phys. Lett. 25 2202
[24] Kim D, Kim Y, Choi K, Grunlan J C and Yu C 2010 ACS Nano 4 513
[25] See K C, Feser J P, Chen C E et al 2010 ACS Nano Lett. 10 4664
[26] Zhang B, Sun J, Katz H E, Fang F and Opila R L 2010 ACS Appl. Mater. Interface 2 3170
[27] Nardes A M, Janssen R A J and Kemerink M 2008 Adv. Funct. Mater. 18 865
[28] Nardes A M, Kemerink M et al 2008 Org. Electron. 9 727
[29] Snaith H J, Kenrick H, Chiesa M and Friend R H 2005 Polymer 46 2573
[30] Ouyang J Y, Xu Q F, Chu C W, Yang Y, Li G and Shinar J 2004 Polymer 45 8443
[31] Timpanaro S, Kemerink M, Touwslager F J, M M De Kok and Schrader S 2004 Chem. Phys. Lett. 394 339
[32] Kim J Y, Jung J H, Lee D E and Joo J 2002 Synth. Meter. 126 311
[33] Gao X, Uehara K, Klug D D and Tse J S 2006 Comput. Mater. Sci. 36 49
[34] Gao X, Uehara K, Klug D D, Patchkovskii S, Tse J S and Tritt T M 2005 Phys. Rev. B 72 125202
[35] Dressethaus M S, Chen G, Tang M Y et al 2007 Adv. Mater. 19 1043
[36] Shakouri A and Li S Q 1999 Proc. Int. Conf. Thermoelectrics (Baltimore August–02 September 1999) 29 402
[37] Yao Q, Chen L D, Xu X C and Wang C F 2005 Chem. Lett. 34 522
[38] Makala R S, Jagannadham K and Sales B C J 2003 Appl. Phys. 94 3907
[39] Liufu S C, Chen L D, Yao Q and Wang C F 2007 Appl. Phys. Lett. 90 112106
[40] Yan H, Ohta N and Toshima N 2001 Macromol. Mater. Eng. 286 139
[41] Long Y, Chen Z, Zhang X, Zhang J and Liu Z 2004 Appl. Phys. Lett. 85 1796
[42] Yan H, Sada N and Toshima N 2002 J. Therm. Anal. Calorim. 69 881
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|