CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Effect of Substrate Temperature on the Structural, Electrical and Optical Properties of Nanocrystalline Silicon Films in Hot-Filament Chemical Vapor Deposition |
GUO Xiao-Song, ZHANG Shan-Shan, BAO Zhong, ZHANG Hong-Liang, CHEN Chang-Cheng, LIU Li-Xin, LIU Yan-Xia, XIE Er-Qing**
|
Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Physical Science and Technology School, Lanzhou University, Lanzhou 730000
|
|
Cite this article: |
GUO Xiao-Song, ZHANG Shan-Shan, BAO Zhong et al 2011 Chin. Phys. Lett. 28 028103 |
|
|
Abstract Hydrogenated nanocrystalline silicon films are deposited onto glass substrates at different substrate temperatures (140–400 °C) by hot−filament chemical vapor deposition. The effect of substrate temperature on the structural properties are investigated. With an increasing substrate temperature, the Raman crystalline volume fraction increases, but decreases with a further increase. The maximum Raman crystalline volume fraction of the nanocrystalline silicon films is about 74% and also has the highest microstructural factor (R=0.89) at a substrate temperature of 250 °C. The deposition rate exhibits a contrary tendency to that of the crystalline volume fraction. The continuous transition of the film structures from columnar to agglomerated is observed at a substrate temperature of 300 °C. The optical band gaps of the grown thin films declines (from 1.89 to 1.53 eV) and dark electrical conductivity increases (from about 10−10 to about 10−6 S/cm) with the increasing substrate temperature.
|
Keywords:
81.07.Bc
81.15.Dj
61.05.cp
|
|
Received: 10 September 2010
Published: 30 January 2011
|
|
PACS: |
81.07.Bc
|
(Nanocrystalline materials)
|
|
81.15.Dj
|
(E-beam and hot filament evaporation deposition)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
|
|
|
[1] Veprek S and Maecek V 1968 Solid-State Electron. 11 683
[2] Meirav U et al 1990 Phys. Rev. Lett. 65 771
[3] Matins R et al 1997 Thin Solid Films 303 47
[4] He Y L et al 1994 J. Appl. Phys. 75 797
[5] Yamamoto K et al 1990 Mater. Res. Soc. Sym. Proc. 164 161
[6] Sheng S R et al 2001 Mater. Res. Soc. Sym. Proc. 664 A23.4.1
[7] Losurdo M et al 2000 J. Appl. Phys. 88 2408
[8] Iqbal Z and Vepiek S 1982 J. Phys. C: Solid State Phys. 15 377
[9] Veprek S et al 1987 Phys. Rev. B 36 3344
[10] Yue G et al 1999 Appl. Phys. Lett. 75 492
[11] Veprek S et al 1982 Phil. Mag. B 45 137
[12] Matsumura H et al 2001 Jpn. J. Appl. Phys. 40 L289
[13] Heya A et al 2000 J. Non-Cryst. Solids 266–269 619
[14] Yamada A et al 1989 Jpn. J. Appl. Phys. 28 L2284
[15] Tsai C C et al 1989 Mater. Res. Sot. Sym. Proc. 149 297
[16] Hu Y H et al 2005 Chin. Phys. 14 1457
[17] Wagner H and Beyer W 1983 Solid State Commun. 48 585
[18] Liu G H et al 2007 Chin. Phys. 16 588
[19] Webb J D et al 1999 Mater. Res. Soc. Sym. Proc. 557 311
[20] David L Y et al 2007 Appl. Phys. Lett. 90 081923
[21] Tauc J et al 1966 Phys. Status Solidi 15 627
[22] Wu Y et al 1996 Phys. Rev. Lett. 77 2049
[23] Koyel Bhattacharya and Das D 2008 J. Phys. D: Appl. Phys. 41 155420
[24] Grebner S et al 1993 Mater. Res. Soc. Sym. Proc. 283 513
[25] Petritz R L 1956 Phys. Rev. 104 1508
[26] Seto J Y W 1975 J. Appl. Phys. 46 5247
[27] Baccarani G et al 1978 J. Appl. Phys. 49 5565
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|