CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Influence of N2 Flux on InN Film Deposition on Sapphire (0001) Substrates by ECR-PEMOCVD |
ZHOU Zhi-Feng1,2, QIN Fu-Wen1,2**, ZANG Hai-Rong1,2, ZHANG Dong1,2, CHEN Wei-Ji1,2, ZHI An-Bo1,2, LIU Xing-Long1,2, YU Bo1,2, JIANG Xin2,3
|
1School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
2Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024
3Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, D-57076 Siegen, Germany
|
|
Cite this article: |
ZHOU Zhi-Feng, QIN Fu-Wen, ZANG Hai-Rong et al 2011 Chin. Phys. Lett. 28 028102 |
|
|
Abstract Highly preferred InN films are deposited on sapphire (0001) substrates by electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD) without using a buffer layer. The structure, surface morphological and electrical characteristics of InN are investigated by in-situ reflection high energy electron diffraction, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy and Hall effect measurement. The quality of the as-grown InN films is markedly improved at the optimized N2 flux of 100 sccm. The results show that the properties of the films are strongly dependent on N2 flux.
|
Keywords:
81.15.Gh
68.55.J-
61.05.Cp
|
|
Received: 29 November 2010
Published: 30 January 2011
|
|
PACS: |
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
68.55.J-
|
(Morphology of films)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
|
|
|
[1] Nakamura S et al 1998 Appl. Phys. Lett. 73 832
[2] Akasaki I et al 1996 Electron. Lett. 32 1105
[3] Yamamoto A et al 2010 Phys. Status Solidi C 7 1309
[4] Elaissa T and Namkoonga G 2006 J. Cryst. Growth 288 218
[5] Yamamoto A, Tsujino M et al 1994 Sol. Energy Mater. Sol. Cells 35 53
[6] Ascazubi R, Wilke I, Denniston K et al 2004 Appl. Phys. Lett. 84 4810
[7] Bhuiyan A G, Hashimoto A et al 2003 J. Appl. Phys. 94 2779
[8] Brian E F et al 1999 J. Appl. Phys. 85 7727
[9] Leary O, Stephen K et al 1998 J. Appl. Phys. 83 826
[10] McChesney J B, Bridenbaugh P M et al 1970 Mater. Res. Bull. 5 783
[11] Yamamoto A, Tanaka T et al 2002 Phys. Status Solidi 1945 10
[12] Yamamoto A, Murakami Y et al 2002 Phys. Status Solidi B 94 510
[13] Yamamoto A et al 1998 J. Cryst. Growth 189 461
[14] Chen W K, Pan Y C et al 1997 Jpn. J. Appl. Phys. 36 1625
[15] Lu H et al 2001 Appl. Phys. Lett. 79 1489
[16] Yasushi N et al 2003 Jpn. J. Appl. Phys. 42 2549
[17] Xu K and Yoshikawa A 2003 Appl. Phys. Lett. 83 251
[18] Yoshinao K et al 2007 J. Cryst. Growth 300 57
[19] Syrkin1 A L et al 2008 Phys. Status Solidi C 5 1792
[20] Feiler D et al 1997 J. Cryst. Growth 171 12
[21] Shinoda H and Mutsukura N 2006 Thin Solid Films 503 8
[22] Xu Y, Gu B and Qin F W et al 2004 J. Vac. Sci. Technol. A 22 302
[23] Davydov V Y et al 2002 Phys. Status Solidi B 229 R1
[24] Bi Z X et al 2005 Thin Solid Films 488 111
[25] Parala H et al 2001 J. Cryst. Growth 231 68
[26] Duxbury N et al 2000 Appl. Phys. Lett. 76 1600
[27] Muraki K et al 1992 Appl. Phys. Lett. 61 557
[28] Moison J M et al 1991 J. Cryst. Growth 111 141
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|