Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 026101    DOI: 10.1088/0256-307X/28/2/026101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Curvature Dependence of Interfacial Properties for Associating Lennard–Jones Fluids: A Density Functional Study
SUN Zong-Li1, KANG Yan-Shuang2
1Science and Technology College, North China Electric Power University, Baoding 071051
2College of Science, Agriculture University of Hebei, Baoding 071001
Cite this article:   
SUN Zong-Li, KANG Yan-Shuang 2011 Chin. Phys. Lett. 28 026101
Download: PDF(624KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Classical density functional theory is used to study the associating Lennard–Jones fluids in contact with spherical hard wall of different curvature radii. The interfacial properties including contact density and fluid-solid interfacial tension are investigated. The influences of associating energy, curvature of hard wall and the bulk density of fluids on these properties are analyzed in detail. The results may provide helpful clues to understand the interfacial properties of other complex fluids.
Keywords: 61.20.Gy      61.20.Qg      68.08.De     
Received: 07 June 2010      Published: 30 January 2011
PACS:  61.20.Gy (Theory and models of liquid structure)  
  61.20.Qg (Structure of associated liquids: electrolytes, molten salts, etc.)  
  68.08.De (Liquid-solid interface structure: measurements and simulations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/026101       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/026101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Zong-Li
KANG Yan-Shuang
[1] Croxton C A 1986 Fluid Interfacial Phenomena (New York: Wiley)
[2] Henderson D 1992 Fundamentals of Inhomogeneous Fluids (New York: Dekker)
[3] Evans R 1979 Adv. Phys. 28 143
[4] Hansen J P and McDonald I R 1986 Theory of Simple Liquids 2nd edn (New York: Academic)
[5] Ramakrishnan T V and Yussouff M 1979 Phys. Rev. B 19 2775
[6] Calleja M, North A N, Powels J G and Rickayzen G 1991 Mol. Phys. 73 973
[7] Zhou S Q and Ruckenstein E 2000 Phys. Rev. E 61 2704
[8] Zhou S Q and Ruckenstein E 2000 J. Chem. Phys. 112 8079
[9] Choudhury N and Ghosh S K 2001 J. Chem. Phys. 114 8530
[10] Kim S C and Suh S Y 2002 J. Chem. Phys. 117 9880
[11] Tarazona P 1985 Phys. Rev. A 31 2672
[12] Curtin W A and Ashcroft N W 1985 Phys. Rev. A 32 2909
[13] Rosenfeld Y 1989 Phys. Rev. Lett. 63 980
[14] Roth R, Evans R, Lang A and Kahl G 2002 J. Phys.: Condens. Matter 14 12063
[15] Yu Y X and Wu J Z 2002 J. Chem. Phys. 117 10156
[16] Yu Y X, Wu J Z and Gao G H 2004 J. Chem. Phys. 120 7223
[17] Yu Y X, Wu J Z, You F Q and Gao G H 2005 Chin. Phys. Lett. 22 246
[18] Yu Y X, Li Y F and Zheng Y X 2010 Chin. Phys. Lett. 27 037101
[19] Kang Y S and Wang H J 2009 Chin. Phys. Lett. 26 126102
[20] Chapman W G, Jackson G and Gubbins K E 1988 Mol. Phys. 65 1057
[21] Segura C J, Chapman W G and Shukla K P 1997 Mol. Phys. 90 759
[22] Wertheim M S 1984 J. Stat. Phys. 35 19
[23] Wertheim M S 1984 J. Stat. Phys. 35 35
[24] Wertheim M S 1986 J. Stat. Phys. 42 459
[25] Wertheim M S 1986 J. Stat. Phys. 42 477
[26] Tang Y P 2003 J. Chem. Phys. 118 4140
[27] Yu Y X and Wu J Z 2002 J. Chem. Phys. 116 7094
[28] Fu D and Li X S 2006 J. Chem. Phys. 125 084716
[29] Fu D 2006 J. Chem. Phys. 124 164701
[30] Cotterman R L, Schwarz B J and Prausnitz J M 1986 AIChE J. 32 1787
[31] Samborski A, Stecki J and Poniewierski A 1993 J. Chem. Phys. 98 8958
[32] Lei Y A, Bykov T, Yoo S and Zeng X C 2005 J. Am. Chem. Soc. 127 15346
[33] Peng B and Yu Y X 2008 J. Phys. Chem. B 112 15407
[34] Yu Y X 2009 J. Chem. Phys. 131 024704
[35] Zhou S Q 2006 J. Chem. Phys. 124 144501
[36] Zhou S Q and Solana J R 2009 Chem. Rev. 109 2829
Related articles from Frontiers Journals
[1] LÜ, Yong-Jun**. Enhanced Surface Premelting of Ni90Si10 Nanoparticles[J]. Chin. Phys. Lett., 2012, 29(4): 026101
[2] GAO Yu-Feng, YANG Yang, SUN De-Yan** . Wetting of Liquid Iron in Carbon Nanotubes and on Graphene Sheets: A Molecular Dynamics Study[J]. Chin. Phys. Lett., 2011, 28(3): 026101
[3] ZHANG Fu-Chun, SHA Mao-Lin, REN Xiu-Ping, WU Guo-Zhong, HU Jun, ZHANG Yi. Morphology and Wettability of [Bmim][PF6] Ionic Liquid on HOPG Substrate[J]. Chin. Phys. Lett., 2010, 27(8): 026101
[4] GAO Yu-Feng, SUN De-Yan. Molecular-Dynamics Simulations of Droplets on a Solid Surface[J]. Chin. Phys. Lett., 2010, 27(6): 026101
[5] LIN Jing, ZHENG Zhi-Jun, YU Ji-Lin, BAI Yi-Long. A Thin Liquid Film and Its Effects in an Atomic Force Microscopy Measurement[J]. Chin. Phys. Lett., 2009, 26(8): 026101
[6] KANG Yan-Shuang, , WANG Hai-Jun,. Density Functional Theory Approach for Charged Hard Sphere Fluids Confined in Spherical Micro-Cavity[J]. Chin. Phys. Lett., 2009, 26(12): 026101
[7] ZHOU Shi-Qi. Phase Behaviour of Purely Repulsive Systems: Violation of Traditional van der Waals Picture[J]. Chin. Phys. Lett., 2008, 25(6): 026101
[8] LIU Jia, WANG Shu-Ying, ZHENG Cai-Ping, XIN Li-Juan, WANG Dan, SUN Min-Hua. Glass Transition Temperature of Water: from Simulations of Diffusion and Excess Entropy[J]. Chin. Phys. Lett., 2007, 24(7): 026101
[9] SONG Fan, MOYNE Christian, BAI Yi-Long. Electrostatic Interactions Between Glycosaminoglycan Molecules[J]. Chin. Phys. Lett., 2005, 22(2): 026101
[10] PAN Xiu-Hong, HONG Yong, JIN Wei-Qing. In Situ Observation of Cell-to-Dendrite Transition[J]. Chin. Phys. Lett., 2005, 22(11): 026101
[11] YU Yang-Xin, WU Jian-Zhong, YOU Feng-Qi, GAO Guang-Hua. A Self-Consistent Theory for the Inter- and Intramolecular Correlation Functions of a Hard-Sphere-Yukawa-Chain Fluids[J]. Chin. Phys. Lett., 2005, 22(1): 026101
[12] TIAN Xue-Lei, SHEN Jun, SUN Jian-Fei, Li Qing-Chun. A New Model for Microstructure of Liquid Metals[J]. Chin. Phys. Lett., 2004, 21(4): 026101
[13] LI Qiang, GUO Qiao-Yi, LI Dian-Zhong, QIAN Bai-Nian, LI Da-Ming, LI Ruo, ZHANG Ping-Wen. Continuous Method for Describing Dendrite Evolution During Solidification[J]. Chin. Phys. Lett., 2004, 21(1): 026101
[14] LI Cheng-Dong, TIAN Xue-Lei, CHEN Xi-Chen, A.G. Ilinsky. Viscosity Measurements of Fe-Si-BCu-Nb-C Metallic Glass Melts by an Oscillating Crucible Method[J]. Chin. Phys. Lett., 2003, 20(3): 026101
[15] YOU Jing-Lin, JIANG Guo-Chang, HOU Huai-Yu, WU Yong-Quan, CHEN Hui, XU Kuang-Di. Temperature-Dependent Raman Spectra and Microstructure of Barium Metaborate Crystals and Its Melts[J]. Chin. Phys. Lett., 2002, 19(2): 026101
Viewed
Full text


Abstract