Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 023101    DOI: 10.1088/0256-307X/28/2/023101
ATOMIC AND MOLECULAR PHYSICS |
QCT Calculations of Reactions of F+LiHLiF+H and F+LiDLiF+D: Product Polarization and Isotope Effects
WANG Tao1, YUE Xian-Fang2
1School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
2Department of Physics and Information Engineering, Jining University, Jining 273155
Cite this article:   
WANG Tao, YUE Xian-Fang 2011 Chin. Phys. Lett. 28 023101
Download: PDF(946KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the quasi-classical trajectory (QCT) method, the product polarization at the collision energy of 46 kcal/mol is investigated for the reactions of F+LiH (v=0, j=0)LiF+H and F+LiD (v=0, j=0)LiF+D on the 2A' ground state potential energy surface (PES)[J. Chem. Phys. 106(1997)1013). The distribution of P(θr), which represents the K and J' correlation, the dihedral angle distribution of K−K'-J' P(φr), the angular distribution P(θrr) and the four PDDCSs[(2π/σ)(dσ00/t), (2π/σ)(dσ20/dωt), (2π/σ)(dσ22+/t), (2π/σ)(dσ21−/t)] are presented and discussed. In addition, isotope effects are investigated. The results indicate that at the collision energy of 46 kcal/mol, with isotopic mass substitution, the orientation degree of LiF perpendicular to the scattering degree becomes stronger while the polarization degree of LiF perpendicular to K keeps almost changeless. In addition, the angular distribution of LiF strongly prefers forward scattering.
Keywords: 31.15.Ap      34.50.Lf      31.15.Xv     
Received: 19 October 2010      Published: 30 January 2011
PACS:  31.15.ap (Polarizabilities and other atomic and molecular properties)  
  34.50.Lf (Chemical reactions)  
  31.15.xv (Molecular dynamics and other numerical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/023101       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/023101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Tao
YUE Xian-Fang
[1] Becker C H, Casavecchia P, Tiedemann P W, Valentini J J and Lee Y T 1980 J. Chem. Phys. 73 2833
[2] Loesch H J, Stenzel S and Wüstenbecker B 1991 J. Chem. Phys. 95 3841
[3] Loesch H J and Stienkemeier F 1993 J. Chem. Phys. 99 9598
[4] Loesch H J and Stienkemeier F 1993 J. Chem. Phys. 98 9570
[5] Parker G A, Laganà A, Crocchianti S and Pack R T 1995 J. Chem. Phys. 102 1238
[6] Aguado A, Paniagua M, Lara M and Roncero O 1997 J. Chem. Phys. 106 1013
[7] Aguado A, Paniagua M, Lara M and Roncero O 1997 J. Chem. Phys. 107 10085
[8] Lara M, Aguado A, Paniagua M and Roncero O 1998 J. Chem. Phys. 109 9391
[9] Laganà A, Bolloni A, Grocchianti S and Parker G A 2000 J. Phys. Chem. 324 466
[10] Baer M, Last I and Loesch H J 1994 J. Chem. Phys. 101 9648
[11] Zhu W, Wang D and Zhang J Z H 1997 Theor. Chem. Acc. 96 31
[12] Lara M, Aguado A, Paniagua M and Roncero O 2000 J. Chem. Phys. 113 1781
[13] Aoiz F J, Martínez M T, Menéndez M, Sáez Rábanos V and Verdasco E 1999 Chem. Phys. Lett. 299 25
[14] Aoiz F J, Verdasco E, Sáez Rábanos V, Loesch H J, Menendez M and Stienkemeier F 2000 Phys. Chem. Chem. Phys. 2 541
[15] Aoiz F J, Martínez M T and Sáez Rábanos V 2001 J. Chem. Phys. 114 8880
[16] Yuan M H and Zhao G J 2010 Int. J. Quantum Chem. 110 1842
[17] Liu X G, Kong H, Xu W W, Liang J J, Zong F J and Zhang Q G 2009 J. Mol. Struct.: Theochem. 908 117
[18] Kong H, Liu X G, Xu W W and Zhang Q G 2009 Chin. Phys. Lett. 26 053102
[19] Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339
[20] Zhao J, Xu Y and Meng Q T 2009 J. Phys. B: At. Mol. Opt. Phys. 42 165006
[21] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[22] Li W L, Wang M S, Yang C L, Liu W W, Sun C and Ren T Q 2007 Chem. Phys. 337 93
[23] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[24] Aguado A, Suárez C and Paniagua M 1995 Chem. Phys. 201 107
[25] Aguado A and Paniagua M 1992 J. Chem. Phys. 96 1265
[26] Chen M M L and Schaefer H F 1980 J. Chem. Phys. 72 4376
[27] Varandas A J C 1988 Adv. Chem. Phys. 74 255
[28] Wang M L, Han K L and He G Z 1998 J. Chem. Phys 109 5446
[29] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[30] Chen M D, Wang M L, Han K L and Ding S L 1999 Chem. Phys. Lett. 301 303
[31] Chen M D, Han K and Lou N Q 2003 J. Chem. Phys. 118 4463
[32] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[33] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[34] Zhang X and Han K L2006 Inter. Quant. Chem. 106 1815
[35] Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[36] Lin S Y, Han K L and Zhang J Z H 2000 Chem. Phys. Lett. 324 122
[37] Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
Related articles from Frontiers Journals
[1] ZHANG Yong-Hui, TANG Li-Yan, ZHANG Xian-Zhou, SHI Ting-Yun, Jim Mitroy. Relativistic Quadrupole Polarizability for the Ground State of Hydrogen-Like Ions[J]. Chin. Phys. Lett., 2012, 29(6): 023101
[2] ZHAI Hong-Sheng, ZHOU Pan-Wang. The Rate Constant Calculations for the Reaction H(2S)+NH(X3Σ-) to N(4S)+H2 by using Quantum Mechanics Method[J]. Chin. Phys. Lett., 2012, 29(6): 023101
[3] CHENG Jie,YUE Xian-Fang**,FENG Hai-Ran. Effect of Rotational Excitation on Stereodynamics for the Reactive Collision Between N(2D) and H2[J]. Chin. Phys. Lett., 2012, 29(4): 023101
[4] CHEN Jia-Wu, LIU Xin-Guo**, SUN Hai-Zhu, ZHANG Qing-Gang . Effect of Collision Energy on the Reactivity O++T2OT++T by the Quasiclassical Trajectory Method[J]. Chin. Phys. Lett., 2011, 28(9): 023101
[5] ZHANG Juan, CHU Tian-Shu**, DONG Shun-Le**, YUAN Shu-Ping, FU Ai-Ping, DUAN Yun-Bo . Influence of Isotope Effects on the Stereodynamics of the N(4S)+H2 → NH+H Reactive System: a QCT Study[J]. Chin. Phys. Lett., 2011, 28(9): 023101
[6] ZHAO Li, SUN Ping, LIU Chao-Zhuo* . Quasi-Classical Trajectory Calculations of Reaction Stereodynamics of H+OH( v = 0, j = 0)H2+O(3 P )[J]. Chin. Phys. Lett., 2011, 28(8): 023101
[7] CHENG Jie, YUE Xian-Fang** . Product Rotational Polarization in the Li+HF ( v=0, j=0) Reaction and Its Isotopic Variants[J]. Chin. Phys. Lett., 2011, 28(8): 023101
[8] QIU Ming-Xia, RUAN Shuang-Chen**, GAO Biao, HUO Kai-Fu, ZHAI Jian-Pang, LI Ling, LIAO Hui, XU Xin-Tong . H2-Assistance One-Step Growth of Si Nanowires and Their Growth Mechanism[J]. Chin. Phys. Lett., 2011, 28(10): 023101
[9] XIAO Jing, YANG Chuan-Lu**, WANG Mei-Shan, MA Xiao-Guang . Collision Energies Effect on Stereodynamics for Ne+H2+→NeH++H Reaction[J]. Chin. Phys. Lett., 2011, 28(1): 023101
[10] ZHU Tong, HU Guo-Dong, ZHANG Qing-Gang. Quasi-classical Trajectory Study of Reaction O (3P)+HCl (v =2; j=1,6,9) →OH+Cl[J]. Chin. Phys. Lett., 2010, 27(3): 023101
[11] LIU Shi-Li, SHI Ying . Theoretical Study of Isotopic Effect of Oxygen Atom on the Stereodynamics for the O(3P)+ D2 → OD+D Reaction[J]. Chin. Phys. Lett., 2010, 27(12): 023101
[12] LIU Hui-Rong, LIU Xin-Guo, SUN Hai-Zhu, ZHANG Qing-Gang . Quasi-Classical Trajectory Study on Ar+H2+/D2+/T2+ Reactions[J]. Chin. Phys. Lett., 2010, 27(10): 023101
[13] KONG Hao, LIU Xin-Guo, XU Wen-Wu, ZHANG Qing-Gang. Stereodynamics of the He+D2+→HeD++D Reaction on the PALMIERI Surface[J]. Chin. Phys. Lett., 2009, 26(5): 023101
[14] ZENG Li, GUO Hong-Kai, ZUO Guang-Hong, WAN Rong-Zheng, FANGHai-Ping,. Water Transport through Multinanopores Membranes[J]. Chin. Phys. Lett., 2009, 26(3): 023101
[15] ZHANG Yue-Xia, KANG Shuai, SHI Ting-Yun. Accurate One-Centre Method for Hydrogen Molecule Ions in Strong Magnetic Field[J]. Chin. Phys. Lett., 2008, 25(11): 023101
Viewed
Full text


Abstract