GENERAL |
|
|
|
|
Thermal Entanglement in a Two-Qutrit Spin-1 Anisotropic Heisenberg Model |
Erhan Albayrak
|
Erciyes University, Department of Physics, 38039, Kayseri, Turkey
|
|
Cite this article: |
Erhan Albayrak 2011 Chin. Phys. Lett. 28 020306 |
|
|
Abstract The negativity (N) as a measure of thermal entanglement (TE) is studied for a two−qutrit spin-1 anisotropic Heisenberg XXZ chain with Dzyaloshinskii–Moriya (DM) interaction in an inhomogeneous magnetic field in detail. The effects of the DM interaction parameter Dz on the thermal variation of the N for given values of the external magnetic field B, a parameter b which controls the inhomogeneity of B and the bilinear interaction parameters Jx=Jy≠Jz are obtained. It is found that N persists to higher values and to higher temperatures for the higher values of ±Dz and for the higher positive values of Jz, i.e. in the antiferromagnetic (AFM) case. When Jz<0, the ferromagnetic (FM) case, and Dz is small, and if Jz is strong enough to compete with Dz, N decreases. In addition, N declines with the increasing values of B and b.
|
Keywords:
03.67.Mn
03.65.Ud
75.10.Jm
|
|
Received: 10 November 2010
Published: 30 January 2011
|
|
PACS: |
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
|
|
|
[1] Yeo Y 2002 Phys. Rev. A 66 062312
[2] Wang X 2001 Phys. Rev. A 64 012313
Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
Kamta G L, Istomin A Y and Starace A F 2007 Eur. Phys. J. D 44 389
Sun Y, Chen Y and Chen H 2003 Phys. Rev. A 68 044301
Zhang R and Zhu S 2006 Phys. Lett. A 348 110
[3] Zhang Y et al 2007 Commun. Theor. Phys. 47 787
Asoudeh M and Karimipour V 2005 Phys. Rev. A 71 022308
[4] Zhao X Y and Zhou L 2007 Int. J. Theor. Phys. 46 2437
Wang X, Fu H and Solomon A I 2001 J. Phys. A: Math. Gen. 34 11307
Santos L F 2003 Phys. Rev. A 67 062306
Gu S J, Lin H Q and Li Y Q 2003 Phys. Rev. A 68 042330
Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[5] Zhou L et al 2003 Phys. Rev. A 68 024301
[6] Yan Z, Zhu S Q and Xiang H 2007 Chin. Phys. 16 2229
[7] Zhang G F et al 2005 Opt. Commun. 245 457
[8] Zhang G F et al 2005 Eur. Phys. J. D 32 409
[9] Wang X, Li H B, Sun Z and Li Y Q 2005 J. Phys. A: Math. Gen. 38 8703
[10] Wang X and Gu S J 2007 J. Phys. A: Math. Theor. 40 10759
[11] Wang X and Wang Z D 2006 Phys. Rev. A 73 064302
[12] Huang H, Wang X, Sun Z and Yang G 2008 Physica A 387 2736
[13] Zhu G Q and Wang X G 2008 Commun. Theor. Phys. 49 343
[14] Yang Z and Ning W Q 2008 Chin. Phys. Lett. 25 31
[15] He M M, Xu C T and Liang J Q 2006 Phys. Lett. A 358 381
[16] Ha K C, Kye S H and Park Y S 2003 Phys. Lett. A 313 163
[17] Zhang G F 2007 Phys. Rev. A 75 034304
Li D C et al 2008 J. Phys.: Condens. Matter. 20 325229
Wang X 2001 Phys. Lett. A 281 101
[18] Albayrak E 2009 Eur. Phys. B 72 491
[19] Li D C and Cao Z L 2009 Chin. Phys. Lett. 26 020309
[20] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|