Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 010306    DOI: 10.1088/0256-307X/28/1/010306
GENERAL |
Why Can We Copy Classical Information?
SHEN Yao, HAO Liang, LONG Gui-Lu**
Key Laboratory for Atomic and Molecular Nanosciences, and Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
SHEN Yao, HAO Liang, LONG Gui-Lu 2011 Chin. Phys. Lett. 28 010306
Download: PDF(310KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is pointed out that the noncloning theorem in quantum mechanics also holds for unknown state in linear classical physics. The apparent capability of copying of a classical state is essentially the capability of perfect measurement in classical physics. The difference in copying between quantum and classical physics is the difference in measurement between the two theories. A classical copying process is the combined action of measurement of an unknown state and the preparation of this state onto another system. Hence perfect measurability in classical physics enables the copying of a classical state.
Keywords: 03.67.Ac      03.65.Ta      42.50.Dv     
Received: 26 November 2010      Published: 23 December 2010
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.Dv (Quantum state engineering and measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/010306       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/010306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHEN Yao
HAO Liang
LONG Gui-Lu
[1] Wootters W K and Zurek W H 1982 Nature 229 802
[2] Dieks D 1982 Phys. Lett. A 92 271
[3] Buzek V and Hillery M 1996 Phys. Rev. A 54 1844
[4] Buzek V, Braustein S L, Hillery M H and Bruß D 1996 Phys. Rev. A 56 3446
[5] Duan L M and Guo G C 1998 Phys. Lett. A 243 261
[6] Duan L M and Guo G C 1998 Phys. Rev. Lett. 80 4999
[7] Pati A and Braustein S L 2000 Nature 404 164
[8] Gao T, Yan F L, Wang Z X and Li Y C 2008 Front. Comput. Sci. China 2 179
[9] Josza R 2002 A Stronger No-cloning Theorem. arXiv:quant-ph/0204153
[10] Horodecki M, Horodecki R, Sen(De) A and Sen U 2003 No-deleting and No-cloning Principles as Consequences of Conservation of Quantum Information arXiv:quant-ph/0306044
[11] Feng Y, Zhang Z Y and Ying M S 2002 Phys. Rev. A 65 042324
[12] Ying M S 2002 Phys. Lett. A 299 107
[13] Ji Z F, Feng Y and Ying M S 2005 Phys. Rev. A 72 032324
[14] Cai Q Y 2004 Chin. Phys. Lett. 21 1189
[15] Shen Y, Hao L and Long G L 2010 Commun. Theor. Phys. 53 486
[16] Maruyama K and Knight P L 2003 Phys. Rev. A 67 032303
[17] Ma P C and Zhan Y B 2009 Commun. Theor. Phys. 51 57
[18] Fang M, Liu Y M, Liu J, Shi S H and Zhang Z J 2006 Commun. Theor. Phys. 46 849
[19] Gao T, Yan F L and Wang Z X 2005 Commun. Theor. Phys. 43 73
[20] Yang Z, Zhang W H, He J and Ye L 2008 Commun. Theor. Phys. 50 1096
[21] Zhang Q R 2008 Sci. Chin. G 51 813
[22] Scarani V, Iblisdir S and Gisin N 2005 Rev. Mod. Phys. 77 1225
[23] Cerf N J and Fiurasek J 2006 Prog. Opt. 49 455
[24] Long G L and Sun Y 2001 Phys. Rev. A 64 014303
Related articles from Frontiers Journals
[1] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 010306
[2] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 010306
[3] CHEN Peng,QIAN Jun,CHEN Dong-Yuan,HU Zheng-Feng**,WANG Yu-Zhu**. Interference of a Narrowband Biphoton with Double Electromagnetically Induced Transparency in an N-Type System[J]. Chin. Phys. Lett., 2012, 29(4): 010306
[4] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 010306
[5] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 010306
[6] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 010306
[7] CAO Ming-Tao, HAN Liang, QI Yue-Rong, ZHANG Shou-Gang, GAO Hong, LI Fu-Li. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(3): 010306
[8] HOU Shi-Yao, CUI Jing-Xin, LI Jun-Lin** . Experimental Realization of Braunstein's Weight-Decision Algorithm[J]. Chin. Phys. Lett., 2011, 28(9): 010306
[9] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 010306
[10] FANG Bin, LIU Bi-Heng, HUANG Yun-Feng**, SHI Bao-Sen, GUO Guang-Can . Spectrum Analysis of a Pulsed Photon Source Generated from Periodically Poled Lithium Niobate[J]. Chin. Phys. Lett., 2011, 28(7): 010306
[11] CHEN Peng, ZHOU Shu-Yu, XU Zhen, DUAN Ya-Fan, CUI Guo-Dong, HONG Tao, WANG Yu-Zhu** . Narrowband Biphoton Generation with Four-Wave Mixing in a Far-Detuning Three-Level System[J]. Chin. Phys. Lett., 2011, 28(7): 010306
[12] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 010306
[13] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 010306
[14] Salman Khan**, M. Khalid Khan . Quantum Stackelberg Duopoly in a Noninertial Frame[J]. Chin. Phys. Lett., 2011, 28(7): 010306
[15] PENG Liang, HUANG Yun-Feng**, LI Li, LIU Bi-Heng, LI Chuan-Feng**, GUO Guang-Can . Experimental Demonstration of Largeness in Bipartite Entanglement Sudden Death[J]. Chin. Phys. Lett., 2011, 28(7): 010306
Viewed
Full text


Abstract