CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Strain-Engineered Low-Density InAs Bilayer Quantum Dots for Single Photon Emission |
LI Zhan-Guo1, LIU Guo-Jun1**, LI Lin1, FENG Ming2, LI Mei1, LU Peng1, ZOU Yong-Gang1, LI Lian-He1, GAO Xin1 |
1State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022
2 Public Center for Computer Teaching and Research, Jilin University, Changchun 130022
|
|
Cite this article: |
LI Zhan-Guo, LIU Guo-Jun, LI Lin et al 2010 Chin. Phys. Lett. 27 126801 |
|
|
Abstract We investigate the growth of strain-engineered low-density InAs bilayer quantum dots (BQDs) on GaAs by molecular beam epitaxy. Owing to increasing dot size and In composition of the upper QDs, low-density BQDs in a GaAs matrix with an emission wavelength up to 1.4 μm at room temperature are achieved. Such a wavelength is larger than that of conventional QDs in a GaAs matrix (generally of about 1.3 μm). The optical properties of the BQDs are sensitive to annealing temperature used after spacer layer growth. Significant decrease of integrated PL intensity is observed as the annealing temperature increases. At 10 K, single photon emission from the BQDs with wavelength around 1.3 μm is observed.
|
Keywords:
68.65.-k
68.65.Hb
81.15.Hi
|
|
Received: 27 August 2010
Published: 23 November 2010
|
|
PACS: |
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
68.65.Hb
|
(Quantum dots (patterned in quantum wells))
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
|
|
|
[1] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E and Imamoglu A 2000 Science 290 2282
[2] Santori C, Pelton M, Salomon G, Dale Y and Yamamoto Y 2001 Phys. Rev. Lett. 86 1502
[3] Ward M B, Karimov O Z, Unitt D, Yuan Z L, See P, Gevaux D G, Shields A J, Atkinson P and Ritchie D 2005 Appl. Phys. Lett. 86 201111
[4] Zinoni C, Alloing B, Monat C, Zwiller V, Li L H, Fiore A, Lunghi Land Gerardino A, Riedmatten H de, Zbinden H and Gisin N 2006 Appl. Phys. Lett. 88 131102
[5] Alloing B, Zinoni C, Zwiller V, Li L H, Monat C, Gobet M, Buchs G, Fiore A, Pelucchi E and Kapon E 2005 Appl. Phys. Lett. 86 101908
[6] Alloing B, Zinoni C, Li L H, Fiore A and Patriarche G 2007 J. of Appl. Phys. 101 024918
[7] Krzyzewski T J and Jones T S 2004 J. Appl. Phys. 96 668
[8] Atkinson P, Kiravittaya S, Benyoucef M, Rastelli A and Schmidt O G 2008 Appl. Phys. Lett. 93 101908
[9] Ru Le E C, Howe P, Jones T S and Murray R 2003 Phys. Rev. B 67 165303
[10] Howe P, Le Ru E C, Clarke E, Abbey B, Murray R and Jones T S 2004 J. Appl. phys. 95 2998
[11] Joyce P B, Krzyzewski T J, Bell G R, Jones T S, Malik S, Childs D and Murray R 2000 Phys. Rev. B 62 10891
[12] Li L H, Rossetti M, Fiore A and Patriarche G 2006 Electron. Lett. 42 638
[13] Ilahi B, Sfaxi L, Bremond G, Maaref H 2006 Mater. Sci. Engin. C 26 971
[14] Nishi K, Saito H, Sugou S and Lee J S 1999 Appl. Phys. Lett. 74 1111
[15] Li L H, Chauvin N, Patriarche G, Alloing B and Fiore A 2008 J. Appl. Phys. 104 083508
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|