Chin. Phys. Lett.  2010, Vol. 27 Issue (11): 110301    DOI: 10.1088/0256-307X/27/11/110301
GENERAL |
Analytical Solutions of the Manning-Rosen Potential In the Tridiagonal Program
ZHANG Min-Cang1**, AN Bo2
1College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062
2Department of Physics and Electronic Engineering, Weinan Teachers University, Weinan 714000
Cite this article:   
ZHANG Min-Cang, AN Bo 2010 Chin. Phys. Lett. 27 110301
Download: PDF(399KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Schrödinger equation with the Manning-Rosen potential is studied by working in a complete square integrable basis that carries a tridiagonal matrix representation of the wave operator. In this program, solving the Schrödinger equation is translated into finding solutions of the resulting three-term recursion relation for the expansion coefficients of the wavefunction. The discrete spectrum of the bound states is obtained by diagonalization of the recursion relation with special choice of the parameters and the wavefunctions is expressed in terms of the Jocobi polynomial.
Keywords: 03.65.Ge      02.30.Gp      03.65.Fd     
Received: 21 May 2010      Published: 22 October 2010
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  
  03.65.Fd (Algebraic methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/11/110301       OR      https://cpl.iphy.ac.cn/Y2010/V27/I11/110301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Min-Cang
AN Bo
[1] Schiff L I 1955 Quantum Mechanics 3^{\rm rd} (New York: McGraw-Hill)
[2] Flügge S 1974 Practical Quantum Mechanics (Berlin: Springer)
[3] de Souza-Dutra A 1993 Phys. Rev. A 47 R2435
Nag N, Roychoudhury R and Varshni Y P1994 Phys. Rev. A 49 5098
Dutt R, Khare A and Varshni Y P 1995 J. Phys. A: Math. Gen. 28 L107
[4] Alhaidari A D 2007 J. Phys. A: Math. Theor. 40 6305
[5] Infeld L and Hull T D 1951 Rev. Mod. Phys. 23 21
[6] Dong S H 2007 Factorization Method In Quantum Mechanics (Netherlands: Springer)
[7] Bander M and Itzykson C 1968 Rev. Mod. Phys. 38 330
Alhassid Y, Gursey F and Iachello F 1983 Phys. Rev. Lett. 50 873
[8] Cooper F, Khare A and Sukhatme U 2004 Supersymmetry in Quantum Mechanics (Singapore: World Scientific)
[9] Alhaidari A D 2005 Ann. Phys. 317 152
El Aaoud E, Bahlouli H and Alhaidari A D 2008 Int. Rev. Phys. 2 n.5
Alhaidari A D 2010 Phys. Scr. 81 025013
[10] Alhaidari A D 2005 J. Phys. A: Math. Gen. 38 3409
Alhaidari A D 2008 Ann. Phys. 323 1709
Alhaidari A D and Bahlouli H 2008 Phys. Rev. Lett. 100 110401
[11] Alhaidari A D, Bahlouli H and Abdelmonem M S 2009 Ann. Phys. 324 2561
[12] Alhaidari A D, Bahlouli H and Abdemonem M S 2008 J. Phys. A: Math. Theor. 41 032001
[13] Bahlouli H and Alhaidari A D 2010 Physica Scripta 81 025008
[14] Manning M F and Rosen N 1933 Phys. Rev. 44 953
[15] Zhang M C and Wang Z B 2006 Acta Phys. Sin. 55 525 (in Chinese)
Qiang W C and Dong S H 2007 Phys. Lett. A 368 13
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 110301
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 110301
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 110301
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 110301
[5] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 110301
[6] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 110301
[7] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 110301
[8] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 110301
[9] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 110301
[10] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 110301
[11] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 110301
[12] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 110301
[13] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 110301
[14] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 110301
[15] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 110301
Viewed
Full text


Abstract