Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 070203    DOI: 10.1088/0256-307X/26/7/070203
GENERAL |
Perturbation to Mei Symmetry and Generalized Mei Adiabatic Invariants for Nonholonomic Systems in Terms of Quasi-Coordinates
PANG Ting, FANG Jian-Hui, ZHANG Ming-Jiang, LIN Peng, LU Kai
College of Physics Science and Technology, China University of Petroleum, Qingdao 266555
Cite this article:   
PANG Ting, FANG Jian-Hui, ZHANG Ming-Jiang et al  2009 Chin. Phys. Lett. 26 070203
Download: PDF(224KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By introducing the coordination function f, the generalized Mei conserved quantities for the nonholonomic systems in terms of quasi-coordinates are given. Then based on the concept of adiabatic invariant, the perturbation to Mei symmetry and the generalized Mei adiabatic invariants for nonholonomic systems in terms of quasi-coordinates are studied.
Keywords: 02.20.Sv      45.20.Jj     
Received: 30 March 2009      Published: 02 July 2009
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/070203       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/070203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PANG Ting
FANG Jian-Hui
ZHANG Ming-Jiang
LIN Peng
LU Kai
[1] Synge J 1936 Tonsorial Methods in Dynamics (Toronto:University of Toronto)
[2] Mei F X 1991 Advanced Analytical Mechanics (Beijing:Beijing Institute of Technology Press) (in Chinese)
[3] Mei F X 1999 Application of Lie Groups and LieAlgebra to Constrained Mechanical Systems (Beijing: Science Press)(in Chinese)
[4] Chen X W and Mei F X 2000 Acta Mech. Sin. 16282
[5] Zhang Y 2002 Acta Mech. Sin. 51 1666 (inChinese)
[6] Zhang Y and Mei F X 2003 Acta Phys. Sin. 522368 (in Chinese)
[7] Fu J L, Chen L Q and Xie F P 2003 Acta Mech. Sin. 52 2664 (in Chinese)
[8] Fu J L and Chen L Q 2004 Phys. Lett. A 324 95
[9] Chen X W and Li Y M 2005 Chin. Phys. 14 663
[10] Qiao Y F, Li R J and Sun D N 2005 Chin. Phys. 14 1919
[11] Zhang Y 2006 Chin. Phys. 151935
[12] Luo S K 2007 Chin. Phys. Lett. 24 3017
[13] Fu J L 2008 Chin. Phys. Lett. 25 2413
[14] Jia L Q, Cui J C, Luo S K and Yang X F 2009 Chin.Phys. Lett. 26 030303
[15] Fang J H 2007 Chin. Phys. 16 887
[16] Fang J H, Ding N and Wang P 2007 Acta Phys. Sin. 56 3039 (in Chinese)
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 070203
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 070203
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 070203
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 070203
[5] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 070203
[6] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 070203
[7] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 070203
[8] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 070203
[9] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 070203
[10] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 070203
[11] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 070203
[12] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 070203
[13] K. Fakhar**, A. H. Kara. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems[J]. Chin. Phys. Lett., 2011, 28(1): 070203
[14] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 070203
[15] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 070203
Viewed
Full text


Abstract