GENERAL |
|
|
|
|
Perturbation to Mei Symmetry and Generalized Mei Adiabatic Invariants for Nonholonomic Systems in Terms of Quasi-Coordinates |
PANG Ting, FANG Jian-Hui, ZHANG Ming-Jiang, LIN Peng, LU Kai |
College of Physics Science and Technology, China University of Petroleum, Qingdao 266555 |
|
Cite this article: |
PANG Ting, FANG Jian-Hui, ZHANG Ming-Jiang et al 2009 Chin. Phys. Lett. 26 070203 |
|
|
Abstract By introducing the coordination function f, the generalized Mei conserved quantities for the nonholonomic systems in terms of quasi-coordinates are given. Then based on the concept of adiabatic invariant, the perturbation to Mei symmetry and the generalized Mei adiabatic invariants for nonholonomic systems in terms of quasi-coordinates are studied.
|
Keywords:
02.20.Sv
45.20.Jj
|
|
Received: 30 March 2009
Published: 02 July 2009
|
|
PACS: |
02.20.Sv
|
(Lie algebras of Lie groups)
|
|
45.20.Jj
|
(Lagrangian and Hamiltonian mechanics)
|
|
|
|
|
[1] Synge J 1936 Tonsorial Methods in Dynamics (Toronto:University of Toronto) [2] Mei F X 1991 Advanced Analytical Mechanics (Beijing:Beijing Institute of Technology Press) (in Chinese) [3] Mei F X 1999 Application of Lie Groups and LieAlgebra to Constrained Mechanical Systems (Beijing: Science Press)(in Chinese) [4] Chen X W and Mei F X 2000 Acta Mech. Sin. 16282 [5] Zhang Y 2002 Acta Mech. Sin. 51 1666 (inChinese) [6] Zhang Y and Mei F X 2003 Acta Phys. Sin. 522368 (in Chinese) [7] Fu J L, Chen L Q and Xie F P 2003 Acta Mech. Sin. 52 2664 (in Chinese) [8] Fu J L and Chen L Q 2004 Phys. Lett. A 324 95 [9] Chen X W and Li Y M 2005 Chin. Phys. 14 663 [10] Qiao Y F, Li R J and Sun D N 2005 Chin. Phys. 14 1919 [11] Zhang Y 2006 Chin. Phys. 151935 [12] Luo S K 2007 Chin. Phys. Lett. 24 3017 [13] Fu J L 2008 Chin. Phys. Lett. 25 2413 [14] Jia L Q, Cui J C, Luo S K and Yang X F 2009 Chin.Phys. Lett. 26 030303 [15] Fang J H 2007 Chin. Phys. 16 887 [16] Fang J H, Ding N and Wang P 2007 Acta Phys. Sin. 56 3039 (in Chinese) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|