CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading |
SONG Hai-Feng, LIU Hai-Feng, ZHANG Guang-Cai, ZHAO Yan-Hong |
Institute of Applied Physics and Computational Mathematics, Beijing 100088 |
|
Cite this article: |
SONG Hai-Feng, LIU Hai-Feng, ZHANG Guang-Cai et al 2009 Chin. Phys. Lett. 26 066401 |
|
|
Abstract We undertake a numerical simulation of shock experiments on tin reported in the literature, by using a multiphase equation of state (MEOS) and a multiphase Steinberg Guinan (MSG) constitutive model for tin in the β, γ and liquid phases. In the MSG model, the Bauschinger effect is considered to better describe the unloading behavior. The phase diagram and Hugoniot of tin are calculated by MEOS, and they agree well with the experimental data. Combined with the MEOS and MSG models, hydrodynamic computer simulations are successful in reproducing the measured velocity profile of the shock wave experiment. Moreover, by analyzing the mass fraction contour as well as stress and temperature profiles of each phase for tin, we further discuss the complex behavior of tin under shock-wave loading.
|
Keywords:
64.70.-p
64.30.+t
62.50.+p
47.40.Nm
|
|
Received: 13 November 2008
Published: 01 June 2009
|
|
|
|
|
|
[1] Duvall G E and Graham R A 1993 Rev. Mod. Phys. 49 523 [2] Bancroft D, Peterson E L and Minshall S 1956 J. Appl.Phys. 27 291 [3] Barker L M and Hollenbach R E 1974 J. Appl. Phys. 45 4872 [4] Zhang X L, Cai L C, Chen J, Xu J A, Jing F Q 2008 Chin. Phys. Lett. 25 2969 [5] Anderson W W, Cverna F, Hixson R S, Vorthman J, Wilke M,Gray I$\!$I$\!$I G T and Brown K L 1999 Shock Compression ofCondensed Matter ed Furnish M D et al (New York: AIP) p 443 [6] Mabire C and H'ereil P L 1999 Shock Compression ofCondensed Matter ed Furnish M D et al (New York: AIP) p 93 [7] Hu J B, Zhou X M, Tan H, Li J B and Dai C D 2008 Appl. Phys. Lett. 92 111905 [8] Kanel G I, Razorenov S V, Utkin AV and Grady D 1995 Shock Compression of Condensed Matter ed Furnish M D et al (NewYork: AIP) p 503 [9] Moshe E, Eliezer S, Dekel E, Henis Z, Ludmirsky A,Goldberg I B and Eliezer D 1999 J. Appl. Phys. 86 4242 [10] Resseguier T de, Signor L, Dragon A, Boustie M, Roy G andLlorca F 2007 J. Appl. Phys. 101 013506 [11] Resseguier T de, Signor L, Dragon A, Severin P andBoustie M 2007 J. Appl. Phys. 102 073535 [12] Zellner M B et al 2007 J. Appl. Phys. 102013522 [13] Barnett J D, Bean V E and Tracy Hall H 1966 J. Appl.Phys. 37 875 [14] Young D A 1991 Phase Diagrams of the Elements(Berkeley: University of California) [15] H'ereil P L and Mabire C 2000 J. Phys. IV France 10 799 [16] Walsh J M, Rice M H, Mcqueen R G and Yarger F L 1957 Phys. Rev. 108 196 [17] Al'tshuler L V, Bakanova A A and Trunin R F 1962 Zh.Eksp. Teor. Fiz. 42 91 (in Russian) Al'tshuler L V, Bakanova A A, Dudoladov I P, Dynin E A,Trunin R F and Chekin B S 1981 Zh. Prikl. Mekh. Tekhn. Fiz. 2 3 (in Russian) [18] McQueen R G and Marsh S P 1960 J. Appl. Phys. 31 1253 [19] Marsh S P (Ed.) 1980 LASL Shock Hugoniot Data(Berkeley: University of California) [20] Cox G A 2006 AIP Conf. Proc. 845 208 [21] Steinberg D J, Cochran S G and Guinan W W 1980 J.Appl. Phys. 51 1498 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|