Chin. Phys. Lett.  2009, Vol. 26 Issue (11): 114207    DOI: 10.1088/0256-307X/26/11/114207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Analysis of a Novel Ka-band Folded Waveguide Amplifier for Traveling-Wave Tubes
LIAO Ming-Liang1, WEI Yan-Yu1, HE Jun1, GONG Yu-Bin1, WANG Wen-Xiang1, Gun-Sik Park2
1National Key Laboratory of High Power Vacuum Electronics, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 6100542Department of Physics, Seoul National University, Seoul 151-747, Korea
Cite this article:   
LIAO Ming-Liang, WEI Yan-Yu, HE Jun et al  2009 Chin. Phys. Lett. 26 114207
Download: PDF(923KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel Ka-band folded waveguide (FW) amplifier for traveling wave tubes (TWT) is investigated. The dispersion curve and interaction impedance are obtained and compared to the normal FW circuit by numerical simulation. The interaction impedance is higher than a normal circuit through the whole band. We also study the beam-wave interaction in this novel circuit, and the nonlinear large-signal performance is analyzed by a 3-D particle-in-cell code MAGIC3D. A much higher continuous-wave (CW) output power with a considerably shorter circuit compared to a normal circuit is predicted by our simulation. Moreover, the novel FW even has a broader 3-dB bandwidth. It therefore will be useful in designing a miniature but high-power and broadband millimeter-wave TWT.
Keywords: 42.60.Da      07.57.Hm      41.20.Jb     
Received: 10 July 2009      Published: 30 October 2009
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/11/114207       OR      https://cpl.iphy.ac.cn/Y2009/V26/I11/114207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIAO Ming-Liang
WEI Yan-Yu
HE Jun
GONG Yu-Bin
WANG Wen-Xiang
Gun-Sik Park
[1] Fu C F et al 2008 Chin. Phys. Lett. 25 3478
[2] Xie J X et al 2007 Chin. Phys. Lett. 24 1106
[3] Wang W X et al 2003 Int. J. Infrared MillimeterWaves 24 1469
[4] Na Y H, Chung S W and Choi J J 2002 IEEE Trans.Plasma Science 30 1017
[5] Han S T et al 2004 IEEE Trans. Plasma Science 32 60
[6] Booske J H et al 2005 IEEE Trans. Electron. Devices 52 685
[7] Bhattacharjee S et al 2004 IEEE Trans. PlasmaScience 32 1002
[8] Han S T 2004 PhD dissertation (Seoul NationalUniversity)
[9] Ludeking L, Smithe D, Bettenhausen M and Hayes S 1999 Magic User's Manual (Virginia: ATK Mission Research Corporation)
Related articles from Frontiers Journals
[1] LIU Dong, FU Yong-Qi, YANG Le-Chen, ZHANG Bao-Shun, LI Hai-Jun, FU Kai, XIONG Min. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors[J]. Chin. Phys. Lett., 2012, 29(6): 114207
[2] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 114207
[3] ZHOU Ren-Lai, ZHAO Jie, YUANG-Chi, CHEN Zhao-Yu, JU You-Lun, WANG Yue-Zhu. All-Fiber Gain-Switched Thulium-Doped Fiber Laser Pumped by 1.558μm Laser[J]. Chin. Phys. Lett., 2012, 29(6): 114207
[4] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 114207
[5] LIU Qin,LIU Jian-Li,JIAO Yue-Chun,FENG Jin-Xia,ZHANG Kuan-Shou**. A Stable 22-W Low-Noise Continuous-Wave Single-Frequency Nd:YVO4 Laser at 1.06 µm Directly Pumped by a Laser Diode[J]. Chin. Phys. Lett., 2012, 29(5): 114207
[6] SU Zhou-Ping**,JI Zhi-Cheng,ZHU Zhuo-Wei,QUE Li-Zhi,ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity[J]. Chin. Phys. Lett., 2012, 29(5): 114207
[7] ZHOU Liang,DUAN Kai-Liang**. Phases in a General Chaotic Three-Coupled-Laser Array[J]. Chin. Phys. Lett., 2012, 29(4): 114207
[8] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 114207
[9] LIU Hou-Kang,XUE Yu-Hao,LI Zhen,HE Bing**,ZHOU Jun**,DING Ya-Qian,JIAO Meng-Li,LIU Chi,QI Yun-Feng,WEI Yun-Rong,DONG Jing-Xing,LOU Qi-Hong. The Improved Power of the Central Lobe in the Beam Combination and High Power Output[J]. Chin. Phys. Lett., 2012, 29(4): 114207
[10] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 114207
[11] ZHENG Yao-Hui**,WANG Ya-Jun,PENG Kun-Chi. A High-Power Single-Frequency 540 nm Laser Obtained by Intracavity Frequency Doubling of an Nd:YAP Laser[J]. Chin. Phys. Lett., 2012, 29(4): 114207
[12] MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. Chin. Phys. Lett., 2012, 29(3): 114207
[13] WANG Jia-Fu, QU Shao-Bo, XU Zhuo, MA Hua, WANG Cong-Min, XIA Song, WANG Xin-Hua, ZHOU Hang. Grating-Coupled Waveguide Cloaking[J]. Chin. Phys. Lett., 2012, 29(3): 114207
[14] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 114207
[15] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 114207
Viewed
Full text


Abstract