[1] | Heinrich A J, Lutz C P, Gupta J A, and Eigler D M 2002 Science 298 1381 | Molecule Cascades
[2] | Li Q L, Li X X, Miao B F, Sun L, Chen G, Han P, and Ding H F 2020 Nat. Commun. 11 1400 | Kondo-free mirages in elliptical quantum corrals
[3] | Moon C R, Mattos L S, Foster B K, Zeltzer G, and Manoharan H C 2009 Nat. Nanotechnol. 4 167 | Quantum holographic encoding in a two-dimensional electron gas
[4] | Kalff F E, Rebergen M P, Fahrenfort E, Girovsky J, Toskovic R, Lado J L, Fernández-Rossier J, and Otte A F 2016 Nat. Nanotechnol. 11 926 | A kilobyte rewritable atomic memory
[5] | Nilius N, Wallis T M, and Ho W 2002 Science 297 1853 | Development of One-Dimensional Band Structure in Artificial Gold Chains
[6] | Hirjibehedin C F, Lutz C P, and Heinrich A J 2006 Science 312 1021 | Spin Coupling in Engineered Atomic Structures
[7] | Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, and Yazdani A 2014 Science 346 602 | Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor
[8] | Feldman B E, Randeria M T, Li J, Jeon S J, Xie Y L, Wang Z J, Drozdov I K, Bernevig B A, and Yazdani A 2017 Nat. Phys. 13 286 | High-resolution studies of the Majorana atomic chain platform
[9] | Jeon S, Xie Y L, Li J, Wang Z J, Bernevig B A, and Yazdani A 2017 Science 358 772 | Distinguishing a Majorana zero mode using spin-resolved measurements
[10] | Kim H, Palacio-Morales A, Posske T, Rozsa L, Palotás K, Szunyogh L, Thorwart M, and Wiesendanger R 2018 Sci. Adv. 4 eaar5251 | Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors
[11] | Crommie M F, Lutz C P, and Eigler D M 1993 Science 262 218 | Confinement of Electrons to Quantum Corrals on a Metal Surface
[12] | Manoharan H C, Lutz C P, and Eigler D M 2000 Nature 403 512 | Quantum mirages formed by coherent projection of electronic structure
[13] | Li Q L, Cao R X, and Ding H F 2020 Appl. Phys. Lett. 117 060501 | Quantum size effect in nanocorrals: From fundamental to potential applications
[14] | Gomes K K, Mar W, Ko W, Guinea F, and Manoharan H C 2012 Nature 483 306 | Designer Dirac fermions and topological phases in molecular graphene
[15] | Collins L C, Witte T G, Silverman R, Green D B, and Gomes K K 2017 Nat. Commun. 8 15961 | Imaging quasiperiodic electronic states in a synthetic Penrose tiling
[16] | Kempkes S N, Slot M R, Freeney S E, Zevenhuizen S J M, Vanmaekelbergh D, Swart I, and Smith C M 2019 Nat. Phys. 15 127 | Design and characterization of electrons in a fractal geometry
[17] | Lieb E H 1989 Phys. Rev. Lett. 62 1201 | Two theorems on the Hubbard model
[18] | Tasaki H 1992 Phys. Rev. Lett. 69 1608 | Ferromagnetism in the Hubbard models with degenerate single-electron ground states
[19] | Mielke A and Tasak H 1993 Commun. Math. Phys. 158 341 | Ferromagnetism in the Hubbard model
[20] | Tasaki H 1994 Phys. Rev. Lett. 73 1158 | Stability of Ferromagnetism in the Hubbard Model
[21] | Miyahara S, Kusuta S, and Furukawa N 2007 Physica C 460–462 1145 | BCS theory on a flat band lattice
[22] | Kopnin N B, Heikkilä T T, and Volovik G E 2011 Phys. Rev. B 83 220503(R) | High-temperature surface superconductivity in topological flat-band systems
[23] | Julku A, Peotta S, Vanhala T I, Kim D H, and Türmä P 2016 Phys. Rev. Lett. 117 045303 | Geometric Origin of Superfluidity in the Lieb-Lattice Flat Band
[24] | Weeks C and Franz M 2010 Phys. Rev. B 82 085310 | Topological insulators on the Lieb and perovskite lattices
[25] | Goldman N, Urban D F, and Bercioux D 2011 Phys. Rev. A 83 063601 | Topological phases for fermionic cold atoms on the Lieb lattice
[26] | Tang E, Mei J W, and Wen X G 2011 Phys. Rev. Lett. 106 236802 | High-Temperature Fractional Quantum Hall States
[27] | Mukherjee S, Spracklen A, Choudhury D, Goldman N, Öhberg P, Andersson E, and Thomson R R 2015 Phys. Rev. Lett. 114 245504 | Observation of a Localized Flat-Band State in a Photonic Lieb Lattice
[28] | Taie S, Ozawa H, Ichinose T, Nishio T, Nakajima S, and Takahashi Y 2015 Sci. Adv. 1 e1500854 | Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice
[29] | Vicencio R A, Cantillano C, Morales-Inostroza L, Real B, Mejiá-Cortés C, Weimann S, Szameit A, and Molina M I 2015 Phys. Rev. Lett. 114 245503 | Observation of Localized States in Lieb Photonic Lattices
[30] | Diebel F, Leykam D, Kroesen S, Denz C, and Desyatnikov A S 2016 Phys. Rev. Lett. 116 183902 | Conical Diffraction and Composite Lieb Bosons in Photonic Lattices
[31] | Slot M R, Gardenier T S, Jacobse P H, van Miert G C P, Kempkes S N, Zevenhuizen S J M, Smith C M, Vanmaekelbergh D, and Swart I 2017 Nat. Phys. 13 672 | Experimental realization and characterization of an electronic Lieb lattice
[32] | Drost R, Ojanen T, Harju A, and Liljeroth P 2017 Nat. Phys. 13 668 | Topological states in engineered atomic lattices
[33] | Yan L H and Liljeroth P 2019 Adv. Phys.: X 4 1651672 | Engineered electronic states in atomically precise artificial lattices and graphene nanoribbons
[34] | Slot M R, Kempkes S N, Knol E J, van Weerdenburg W M J, van den Broeke J J, Wegner D, Vanmaekelbergh D, Khajetoorians A A, Smith C M, and Swart I 2019 Phys. Rev. X 9 011009 | -Band Engineering in Artificial Electronic Lattices
[35] | Eigler D M and Schweizer E K 1990 Nature 344 524 | Positioning single atoms with a scanning tunnelling microscope
[36] | Kittel C 2005 Fermi Surfaces and Metals in Introduction to Solid State Physics (New York: Wiley) p 233 |
[37] | Kliewer J, Berndt R, and Crampin S 2000 Phys. Rev. Lett. 85 4936 | Controlled Modification of Individual Adsorbate Electronic Structure
[38] | Fiete G A and Heller E J 2003 Rev. Mod. Phys. 75 933 | Colloquium : Theory of quantum corrals and quantum mirages
[39] | Li J T, Schneider W D, and Berndt R 1997 Phys. Rev. B 56 7656 | Local density of states from spectroscopic scanning-tunneling-microscope images: Ag(111)
[40] | Mielke A 1991 J. Phys. A 24 3311 | Ferromagnetism in the Hubbard model on line graphs and further considerations
[41] | Shen R, Shao L B, Wang B, and Xing D Y 2010 Phys. Rev. B 81 041410(R) | Single Dirac cone with a flat band touching on line-centered-square optical lattices
[42] | Qiu W X, Li S, Gao J H, Zhou Y, and Zhang F C 2016 Phys. Rev. B 94 241409(R) | Designing an artificial Lieb lattice on a metal surface
[43] | Lazarovits B, Szunyogh L, and Weinberger P 2006 Phys. Rev. B 73 045430 | Spin-polarized surface states close to adatoms on
[44] | Lounis S, Mavropoulos P, Dederichs P H, and Blügel S 2006 Phys. Rev. B 73 195421 | Surface-state scattering by adatoms on noble metals: Ab initio calculations using the Korringa-Kohn-Rostoker Green function method
[45] | Madhavan V, Chen W, Jamneala T, Crommie M F, and Wingreen N S 2001 Phys. Rev. B 64 165412 | Local spectroscopy of a Kondo impurity: Co on Au(111)
[46] | Olsson F E, Persson M, Borisov A G, Gauyacq J P, Lagoute J, and Fölsch S 2004 Phys. Rev. Lett. 93 206803 | Localization of the Cu(111) Surface State by Single Cu Adatoms
[47] | Limot L, Pehlke E, Kröger J, and Berndt R 2005 Phys. Rev. Lett. 94 036805 | Surface-State Localization at Adatoms
[48] | Tacca M S, Jacob T, and Goldberg E C 2021 Phys. Rev. B 103 245419 | Influence of surface states on the conductance spectra for Co adsorbed on Cu(111)
[49] | Fernández J, Roura-Bas P, and Aligia A A 2021 Phys. Rev. Lett. 126 046801 | Theory of Differential Conductance of Co on Cu(111) Including Co and Orbitals, and Surface and Bulk Cu States
[50] | Fölsch S, Hyldgaard P, Koch R, and Ploog K H 2004 Phys. Rev. Lett. 92 056803 | Quantum Confinement in Monatomic Cu Chains on Cu(111)
[51] | Lagoute J, Liu X, and Fölsch S 2005 Phys. Rev. Lett. 95 136801 | Link between Adatom Resonances and the Cu(111) Shockley Surface State
[52] | Huda M N, Kezilebieke S, and Liljeroth P 2020 Phys. Rev. Res. 2 043426 | Designer flat bands in quasi-one-dimensional atomic lattices