[1] | Murray M M, Lewkowicz D J, Amedi A, and Wallace M T 2016 Trends Neurosci. 39 567 | Multisensory Processes: A Balancing Act across the Lifespan
[2] | Zenke F, Gerstner W, and Ganguli S 2017 Curr. Opin. Neurobiol. 43 166 | The temporal paradox of Hebbian learning and homeostatic plasticity
[3] | Legg S and Hutter M 2007 Minds & Machines 17 391 | Universal Intelligence: A Definition of Machine Intelligence
[4] | Legg S and Veness J 2011 arXiv:1109.5951 [cs.AI] | An Approximation of the Universal Intelligence Measure
[5] | Hernández-Orallo J and Dowe D L 2010 Artif. Intell. 174 1508 | Measuring universal intelligence: Towards an anytime intelligence test
[6] | Parisi G I, Kemker R, Part J L, Kanan C, and Wermter S 2019 Neural Networks 113 54 | Continual lifelong learning with neural networks: A review
[7] | Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, and Riedmiller M 2013 arXiv:1312.5602 [cs.LG] | Playing Atari with Deep Reinforcement Learning
[8] | Mnih V, Kavukcuoglu K, Silver D et al. 2015 Nature 518 529 | Human-level control through deep reinforcement learning
[9] | Silver D, Huang A, Maddison C J et al. 2016 Nature 529 484 | Mastering the game of Go with deep neural networks and tree search
[10] | Silver D, Schrittwieser J, Simonyan K et al. 2017 Nature 550 354 | Mastering the game of Go without human knowledge
[11] | Krizhevsky A, Sutskever I, and Hinton G E 2017 Commun. ACM 60 84 | ImageNet classification with deep convolutional neural networks
[12] | Silver D, Hubert T, Schrittwieser J et al. 2018 Science 362 1140 | A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play
[13] | McCloskey M and Cohen N J 1989 Psychology of Learning and Motivation (San Diego: Academic Press) vol 24 p 109 | Psychology of Learning and Motivation
[14] | Robins A 1995 Connect. Sci. 7 123 | Catastrophic Forgetting, Rehearsal and Pseudorehearsal
[15] | French R M 1999 Trends Cognit. Sci. 3 128 | Catastrophic forgetting in connectionist networks
[16] | Goodfellow I J, Mirza M, Xiao D, Courville A, and Bengio Y 2013 arXiv:1312.6211 [stat.ML] | An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks
[17] | Kemker R, McClure M, Abitino A, Hayes T, and Kanan C 2017 arXiv:1708.02072 [cs.AI] | Measuring Catastrophic Forgetting in Neural Networks
[18] | Lloyd S, Mohseni M, and Rebentrost P 2013 arXiv: 1307.0411 [quant-ph] | Quantum algorithms for supervised and unsupervised machine learning
[19] | Lloyd S and Weedbrook C 2018 Phys. Rev. Lett. 121 040502 | Quantum Generative Adversarial Learning
[20] | Amin M H, Andriyash E, Rolfe J, Kulchytskyy B, and Melko R 2018 Phys. Rev. X 8 021050 | Quantum Boltzmann Machine
[21] | Cong I, Choi S, and Lukin M D 2019 Nat. Phys. 15 1273 | Quantum convolutional neural networks
[22] | Lamata L 2017 Sci. Rep. 7 1609 | Basic protocols in quantum reinforcement learning with superconducting circuits
[23] | Du Y, Hsieh M H, Liu T, and Tao D 2018 arXiv:1809.06056 [quant-ph] | Implementable Quantum Classifier for Nonlinear Data
[24] | Hu L, Wu S H, Cai W et al. 2019 Sci. Adv. 5 eaav2761 | Quantum generative adversarial learning in a superconducting quantum circuit
[25] | Saggio V, Asenbeck B E, Hamann A et al. 2021 Nature 591 229 | Experimental quantum speed-up in reinforcement learning agents
[26] | Cong I and Duan L 2016 New J. Phys. 18 073011 | Quantum discriminant analysis for dimensionality reduction and classification
[27] | Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, and Lloyd S 2017 Nature 549 195 | Quantum machine learning
[28] | Gao X, Zhang Z Y, and Duan L M 2018 Sci. Adv. 4 eaat9004 | A quantum machine learning algorithm based on generative models
[29] | Sarma S D, Deng D L, and Duan L M 2019 Phys. Today 72 48 | Machine learning meets quantum physics
[30] | Aaronson S 2015 Nat. Phys. 11 291 | Read the fine print
[31] | Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, and Zdeborová L 2019 Rev. Mod. Phys. 91 045002 | Machine learning and the physical sciences
[32] | Liu Y, Arunachalam S, and Temme K 2021 Nat. Phys. 17 1013 | A rigorous and robust quantum speed-up in supervised machine learning
[33] | Alexeev Y, Bacon D, Brown K R et al. 2021 PRX Quantum 2 017001 | Quantum Computer Systems for Scientific Discovery
[34] | Awschalom D, Berggren K K, Bernien H et al. 2021 PRX Quantum 2 017002 | Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies
[35] | Altman E, Brown K R, Carleo G et al. 2021 PRX Quantum 2 017003 | Quantum Simulators: Architectures and Opportunities
[36] | Du Y, Hsieh M H, Liu T, You S, and Tao D 2021 PRX Quantum 2 040337 | Learnability of Quantum Neural Networks
[37] | Sweke R, Wilde F, Meyer J, Schuld M, Faehrmann P K, Meynard-Piganeau B, and Eisert J 2020 Quantum 4 314 | Stochastic gradient descent for hybrid quantum-classical optimization
[38] | You X and Wu X 2021 Proceedings of the 38th International Conference on Machine Learning (PMLR) vol 139 pp 12144–12155 |
[39] | Dunjko V and Briegel H J 2018 Rep. Prog. Phys. 81 074001 | Machine learning & artificial intelligence in the quantum domain: a review of recent progress
[40] | Lu S, Duan L M, and Deng D L 2020 Phys. Rev. Res. 2 033212 | Quantum adversarial machine learning
[41] | Liu N and Wittek P 2020 Phys. Rev. A 101 062331 | Vulnerability of quantum classification to adversarial perturbations
[42] | Gong W and Deng D L 2021 arXiv:2102.07788 [quant-ph] | Universal Adversarial Examples and Perturbations for Quantum Classifiers
[43] | Schuld M and Killoran N 2019 Phys. Rev. Lett. 122 040504 | Quantum Machine Learning in Feature Hilbert Spaces
[44] | Grant E, Benedetti M, Cao S, Hallam A, Lockhart J, Stojevic V, Green A G, and Severini S 2018 npj Quantum Inf. 4 65 | Hierarchical quantum classifiers
[45] | Blank C, Park D K, Rhee J K K, and Petruccione F 2020 npj Quantum Inf. 6 41 | Quantum classifier with tailored quantum kernel
[46] | Du Y X, Hsieh M H, Liu T L, Tao D C, and Liu N N 2021 Phys. Rev. Res. 3 023153 | Quantum noise protects quantum classifiers against adversaries
[47] | Russell S and Norvig P 2020 Artificial Intelligence: A Modern Approach (Pearson) |
[48] | LeCun Y, Cortes C, and Burges C 1998 MNIST Handwritten Digit Database |
[49] | Chang C Z, Zhang J, Feng X et al. 2013 Science 340 167 | Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
[50] | Yang G, Pan F, and Gan W B 2009 Nature 462 920 | Stably maintained dendritic spines are associated with lifelong memories
[51] | Kirkpatrick J, Pascanu R, Rabinowitz N et al. 2016 arXiv:1612.00796 [cs.LG] | Overcoming catastrophic forgetting in neural networks
[52] | Bottou L 2004 Advanced Lectures on Machine Learning: ML Summer Schools, Canberra, Australia, 2–14 February 2003, Revised Lectures, Tübingen, Germany, 4–16 August 2003 (Berlin: Springer) p 146 | Lecture Notes in Computer Science
[53] | Kingma D P and Ba J 2014 arXiv:1412.6980 [cs.LG] | Adam: A Method for Stochastic Optimization
[54] | Goodfellow I, Bengio Y, and Courville A 2016 Deep Learning (Cambridge: MIT Press) |
[55] | Garipov T, Izmailov P, Podoprikhin D, Vetrov D P, and Wilson A G 2018 Advances in Neural Information Processing Systems (Curran Associates, Inc.) |
[56] | Scott W A 2002 J. Stat. Comput. Simul. 72 599 | Maximum likelihood estimation using the empirical fisher information matrix
[57] | Ly A, Marsman M, Verhagen J, Grasman R, and Wagenmakers E J 2017 arXiv:1705.01064 [math.ST] | A Tutorial on Fisher Information
[58] | Kunstner F, Balles L, and Hennig P 2019 arXiv:1905.12558 [cs.LG] | Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
[59] | Frieden B R 1998 Physics from Fisher Information: A Unification (Cambridge: Cambridge University Press) |
[60] | Petz D and Ghinea C 2011 Quantum Probab. Relat. Top. 27 261 | INTRODUCTION TO QUANTUM FISHER INFORMATION
[61] | Liu J, Yuan H, Lu X M, and Wang X 2019 J. Phys. A 53 023001 | Quantum Fisher information matrix and multiparameter estimation
[62] | Huang K, Wang Z A, Song C et al. 2021 npj Quantum Inf. 7 165 | Quantum generative adversarial networks with multiple superconducting qubits
[63] | Smacchia P, Amico L, Facchi P, Fazio R, Florio G, Pascazio S, and Vedral V 2011 Phys. Rev. A 84 022304 | Statistical mechanics of the cluster Ising model
[64] | Rao D, Visin F, Rusu A A, Teh Y W, Pascanu R, and Hadsell R 2019 arXiv:1910.14481 [cs.LG] | Continual Unsupervised Representation Learning
[65] | Du Y, Hsieh M H, Liu T, and Tao D 2020 Phys. Rev. Res. 2 033125 | Expressive power of parametrized quantum circuits
[66] | Huang H Y, Kueng R, and Preskill J 2021 Phys. Rev. Lett. 126 190505 | Information-Theoretic Bounds on Quantum Advantage in Machine Learning
[67] | Huang H Y, Kueng R, Torlai G, Albert V V, and Preskill J 2021 arXiv:2106.12627 [quant-ph] | Provably efficient machine learning for quantum many-body problems
[68] | Sharma K, Cerezo M, Holmes Z, Cincio L, Sornborger A, and Coles P J 2022 Phys. Rev. Lett. 128 070501 | Reformulation of the No-Free-Lunch Theorem for Entangled Datasets