Express Letter

Unitary Scattering Protected by Pseudo-Hermiticity

  • Received Date: December 06, 2021
  • Published Date: February 28, 2022
  • Hermitian systems possess unitary scattering. However, the Hermiticity is unnecessary for a unitary scattering although the scattering under the influence of non-Hermiticity is mostly non-unitary. Here we prove that the unitary scattering is protected by certain type of pseudo-Hermiticity and unaffected by the degree of non-Hermiticity. The energy conservation is violated in the scattering process and recovers after scattering. The subsystem of the pseudo-Hermitian scattering center including only the connection sites is Hermitian. These findings provide fundamental insights on the unitary scattering, pseudo-Hermiticity, and energy conservation, and are promising for light propagation, mesoscopic electron transport, and quantum interference in non-Hermitian systems.
  • Article Text

  • [1]
    . [J]. 中国物理快报, 2019, 36(2): 27301-.
    [1]
    Mostafazadeh A 2002 J. Math. Phys. 43 205 doi: 10.1063/1.1418246

    CrossRef Google Scholar

    [2]
    . [J]. 中国物理快报, 2017, 34(9): 97303-.
    [2]
    Jones H F 2005 J. Phys. A 38 1741 doi: 10.1088/0305-4470/38/8/010

    CrossRef Google Scholar

    [3]
    GAO Hai-Xia**;HU Rong;YANG Yin-Tang. The Theoretical Investigation and Analysis of High-Performance ZnO Double-Gate Double-Layer Insulator Thin-Film Transistors[J]. 中国物理快报, 2012, 29(1): 17305-017305.
    [3]
    Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 doi: 10.1103/PhysRevLett.80.5243

    CrossRef Google Scholar

    [4]
    ZHOU Yan-Wen**;WU Fa-Yu;ZHENG Chun-Yan . Behaviour of Charge Carriers in As-Deposited and Annealed Undoped TCO Films[J]. 中国物理快报, 2011, 28(10): 107307-107307.
    [4]
    Dorey P, Dunning C, and Tateo R 2001 J. Phys. A 34 5679 doi: 10.1088/0305-4470/34/28/305

    CrossRef Google Scholar

    [5]
    LI Jin-Liang;LI Yu-Xian. Spin Current Through Triple Quantum Dot in the Presence of Rashba Spin-Orbit Interaction[J]. 中国物理快报, 2010, 27(5): 57202-057202.
    [5]
    Ruschhaupt A, Delgado F, and Muga J G 2005 J. Phys. A 38 L171 doi: 10.1088/0305-4470/38/9/L03

    CrossRef Google Scholar

    [6]
    ZHOU Yi(周毅);;HONG Ming-Hui(洪明辉);;FUHYing-Hsi Jerry(傅盈西);LU Li(吕力);\\TAN Leng Seow(陈凌霄); Luk\`yanchuk B S. Light Irradiation through Small Particles and Its Applications for Surface Nanostructuring in Near Field[J]. 中国物理快报, 2007, 24(10): 2947-2950.
    [6]
    Jin L and Song Z 2009 Phys. Rev. A 80 052107 doi: 10.1103/PhysRevA.80.052107

    CrossRef Google Scholar

    [7]
    Joglekar Y N and Saxena A 2011 Phys. Rev. A 83 050101R doi: 10.1103/PhysRevA.83.050101

    CrossRef Google Scholar

    [7]
    ZHANG Yong-Mei;XIONG Shi-Jie. Evolution of Spin and Charge in a System with Interacting Impurity and Conducting Electrons[J]. 中国物理快报, 2003, 20(11): 2023-2026.
    [8]
    Suchkov S V, Fotsa-Ngaffo F, Kenfack-Jiotsa A, Tikeng A D, Kofane T C, Kivshar Y S, and Sukhorukov A A 2016 New J. Phys. 18 065005 doi: 10.1088/1367-2630/18/6/065005

    CrossRef Google Scholar

    [8]
    ZHENG Yi-Song;LÜTian-Quan;ZHANG Cheng-Xiang;SU Wen-Hui. Interface Roughness Scattering on Electronic Transport in a Quantum Well[J]. 中国物理快报, 2003, 20(10): 1844-1847.
    [9]
    Chen P and Chong Y D 2017 Phys. Rev. A 95 062113 doi: 10.1103/PhysRevA.95.062113

    CrossRef Google Scholar

    [9]
    XIONG Yong-Jian;XIONG Shi-Jie. Transient Process of Transport Through a Quantum Dot in a Stepped Bias: a Numerical Approach[J]. 中国物理快报, 2001, 18(12): 1638-1640.
    [10]
    Luo L, Luo J, Chu H, and Lai Y 2021 Adv. Photon. Res. 2 2000081 doi: 10.1002/adpr.202000081

    CrossRef Google Scholar

    [11]
    Duan L, Wang Y Z, and Chen Q H 2020 Chin. Phys. Lett. 37 081101 doi: 10.1088/0256-307X/37/8/081101

    CrossRef Google Scholar

    [12]
    Lei S, Bai D, Ren Z, and Lyu M 2021 Chin. Phys. Lett. 38 051101 doi: 10.1088/0256-307X/38/5/051101

    CrossRef Google Scholar

    [13]
    Song Q, Dai S, Han D, Zhang Z Q, Chan C T, and Zi J 2021 Chin. Phys. Lett. 38 084203 doi: 10.1088/0256-307X/38/8/084203

    CrossRef Google Scholar

    [14]
    El-Ganainy R, Makris K G, Christodoulides D N, and Musslimani Z H 2007 Opt. Lett. 32 2632 doi: 10.1364/OL.32.002632

    CrossRef Google Scholar

    [15]
    Makris K G, El-Ganainy R, Christodoulides D N, and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904 doi: 10.1103/PhysRevLett.100.103904

    CrossRef Google Scholar

    [16]
    Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, and Kip D 2010 Nat. Phys. 6 192 doi: 10.1038/nphys1515

    CrossRef Google Scholar

    [17]
    Mostafazadeh A and Batal A 2004 J. Phys. A 37 11645 doi: 10.1088/0305-4470/37/48/009

    CrossRef Google Scholar

    [18]
    Brody D C 2014 J. Phys. A 47 035305 doi: 10.1088/1751-8113/47/3/035305

    CrossRef Google Scholar

    [19]
    Jin L and Song Z 2011 Phys. Rev. A 84 042116 doi: 10.1103/PhysRevA.84.042116

    CrossRef Google Scholar

    [20]
    Kottos T 2010 Nat. Phys. 6 166 doi: 10.1038/nphys1612

    CrossRef Google Scholar

    [21]
    Zheng M C, Christodoulides D N, Fleischmann R, and Kottos T 2010 Phys. Rev. A 82 010103R doi: 10.1103/PhysRevA.82.010103

    CrossRef Google Scholar

    [22]
    Wang P, Jin L, Zhang G, and Song Z 2016 Phys. Rev. A 94 053834 doi: 10.1103/PhysRevA.94.053834

    CrossRef Google Scholar

    [23]
    Ge L 2018 Photon. Res. 6 A10 doi: 10.1364/PRJ.6.000A10

    CrossRef Google Scholar

    [24]
    Xiao L, Wang K, Zhan X, Bian Z, Kawabata K, Ueda M, Yi W, and Xue P 2019 Phys. Rev. Lett. 123 230401 doi: 10.1103/PhysRevLett.123.230401

    CrossRef Google Scholar

    [25]
    Peng B, Özdemir S K, Lei F, Gianfreda F M M, Long G L, Fan S, Nori F, Bender C M, and Yang L 2014 Nat. Phys. 10 394 doi: 10.1038/nphys2927

    CrossRef Google Scholar

    [26]
    Ding K, Ma G, Xiao M, Zhang Z Q, and Chan C T 2016 Phys. Rev. X 6 021007 doi: 10.1103/PhysRevX.6.021007

    CrossRef Google Scholar

    [27]
    Bian Z, Xiao L, Wang K, Zhan X, Onanga F A, Ruzicka F, Yi W, Joglekar Y N, and Xue P 2020 Phys. Rev. Res. 2 022039R doi: 10.1103/PhysRevResearch.2.022039

    CrossRef Google Scholar

    [28]
    Liu W, Wu Y, Duan C K, Rong X, and Du J 2021 Phys. Rev. Lett. 126 170506 doi: 10.1103/PhysRevLett.126.170506

    CrossRef Google Scholar

    [29]
    Ashida Y, Gong Z, and Ueda M 2020 Adv. Phys. 69 249 doi: 10.1080/00018732.2021.1876991

    CrossRef Google Scholar

    [30]
    Moiseyev N 2011 Non-Hermitian Quantum Mechanics Cambridge: Cambridge University Press

    Google Scholar

    [31]
    Konotop V V, Yang J, and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002 doi: 10.1103/RevModPhys.88.035002

    CrossRef Google Scholar

    [32]
    Suchkov S V, Sukhorukov A A, Huang J, Dmitriev S V, Lee C, and Kivshar Y S 2016 Laser & Photon. Rev. 10 177 doi: 10.1002/lpor.201500227

    CrossRef Google Scholar

    [33]
    Feng L, El-Ganainy R, and Ge L 2017 Nat. Photon. 11 752 doi: 10.1038/s41566-017-0031-1

    CrossRef Google Scholar

    [34]
    Longhi S 2017 Europhys. Lett. 120 64001 doi: 10.1209/0295-5075/120/64001

    CrossRef Google Scholar

    [35]
    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, and Christodoulides D N 2018 Nat. Phys. 14 11 doi: 10.1038/nphys4323

    CrossRef Google Scholar

    [36]
    Miri M A and Alù A 2019 Science 363 eaar7709 doi: 10.1126/science.aar7709

    CrossRef Google Scholar

    [37]
    Özdemir S K, Rotter S, Nori F, and Yang L 2019 Nat. Mater. 18 783 doi: 10.1038/s41563-019-0304-9

    CrossRef Google Scholar

    [38]
    Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P, and Chen Y F 2019 Adv. Mater. 32 1903639 doi: 10.1002/adma.201903639

    CrossRef Google Scholar

    [39]
    Wiersig J 2014 Phys. Rev. Lett. 112 203901 doi: 10.1103/PhysRevLett.112.203901

    CrossRef Google Scholar

    [40]
    Chen W, Ozdemir S K, Zhao G, Wiersig J, and Yang L 2017 Nature 548 192 doi: 10.1038/nature23281

    CrossRef Google Scholar

    [41]
    Lau H K and Clerk A A 2018 Nat. Commun. 9 4320 doi: 10.1038/s41467-018-06477-7

    CrossRef Google Scholar

    [42]
    Hokmabadi M P, Schumer A, Christodoulides D N, and Khajavikhan M 2019 Nature 576 70 doi: 10.1038/s41586-019-1780-4

    CrossRef Google Scholar

    [43]
    Chu Y, Liu Y, Liu H, and Cai J 2020 Phys. Rev. Lett. 124 020501 doi: 10.1103/PhysRevLett.124.020501

    CrossRef Google Scholar

    [44]
    Xu H, Mason D, Jiang L, and Harris J G E 2016 Nature 537 80 doi: 10.1038/nature18604

    CrossRef Google Scholar

    [45]
    Assawaworrarit S, Yu X, and Fan S 2017 Nature 546 387 doi: 10.1038/nature22404

    CrossRef Google Scholar

    [46]
    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, and Khajavikhan M 2014 Science 346 975 doi: 10.1126/science.1258480

    CrossRef Google Scholar

    [47]
    Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D, and Khajavikhan M 2018 Science 359 eaar4005 doi: 10.1126/science.aar4005

    CrossRef Google Scholar

    [48]
    Chong Y D, Ge L, Cao H, and Stone A D 2010 Phys. Rev. Lett. 105 053901 doi: 10.1103/PhysRevLett.105.053901

    CrossRef Google Scholar

    [49]
    Longhi S 2010 Phys. Rev. A 82 031801R doi: 10.1103/PhysRevA.82.031801

    CrossRef Google Scholar

    [50]
    Wan W, Chong Y, Ge L, Noh H, Stone A D, and Cao H 2011 Science 331 889 doi: 10.1126/science.1200735

    CrossRef Google Scholar

    [51]
    Sun Y, Tan W, Li H Q, Li J, and Chen H 2014 Phys. Rev. Lett. 112 143903 doi: 10.1103/PhysRevLett.112.143903

    CrossRef Google Scholar

    [52]
    Li H, Suwunnarat S, Fleischmann R, Schanz H, and Kottos T 2017 Phys. Rev. Lett. 118 044101 doi: 10.1103/PhysRevLett.118.044101

    CrossRef Google Scholar

    [53]
    Jeffers J 2019 Phys. Rev. Lett. 123 143602 doi: 10.1103/PhysRevLett.123.143602

    CrossRef Google Scholar

    [54]
    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901 doi: 10.1103/PhysRevLett.106.213901

    CrossRef Google Scholar

    [55]
    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, and Peschel U 2012 Nature 488 167 doi: 10.1038/nature11298

    CrossRef Google Scholar

    [56]
    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, and Scherer A 2013 Nat. Mater. 12 108 doi: 10.1038/nmat3495

    CrossRef Google Scholar

    [57]
    Zhu X, Ramezani H, Shi C, Zhu J, and Zhang X 2014 Phys. Rev. X 4 031042 doi: 10.1103/PhysRevX.4.031042

    CrossRef Google Scholar

    [58]
    Wu J H, Artoni M, Rocca G C L, and Degeneracies N H 2014 Phys. Rev. Lett. 113 123004 doi: 10.1103/PhysRevLett.113.123004

    CrossRef Google Scholar

    [59]
    Sounas D L, Fleury R, and Alù A 2015 Phys. Rev. Appl. 4 014005 doi: 10.1103/PhysRevApplied.4.014005

    CrossRef Google Scholar

    [60]
    Makris K G, Kresic I, Brandstötter A, and Rotter S 2020 Optica 7 619 doi: 10.1364/OPTICA.390788

    CrossRef Google Scholar

    [61]
    Longhi S 2015 Opt. Lett. 40 1278 doi: 10.1364/OL.40.001278

    CrossRef Google Scholar

    [62]
    Sweeney W R, Hsu C W, Rotter S, and Stone A D 2019 Phys. Rev. Lett. 122 093901 doi: 10.1103/PhysRevLett.122.093901

    CrossRef Google Scholar

    [63]
    Li C, Jin L, and Song Z 2017 Phys. Rev. A 95 022125 doi: 10.1103/PhysRevA.95.022125

    CrossRef Google Scholar

    [64]
    Koutserimpas T T and Fleury R 2018 Phys. Rev. Lett. 120 087401 doi: 10.1103/PhysRevLett.120.087401

    CrossRef Google Scholar

    [65]
    Mostafazadeh A 2009 Phys. Rev. Lett. 102 220402 doi: 10.1103/PhysRevLett.102.220402

    CrossRef Google Scholar

    [66]
    Ramezani H, Li H K, Wang Y, and Zhang X 2014 Phys. Rev. Lett. 113 263905 doi: 10.1103/PhysRevLett.113.263905

    CrossRef Google Scholar

    [67]
    Jin L and Song Z 2018 Phys. Rev. Lett. 121 073901 doi: 10.1103/PhysRevLett.121.073901

    CrossRef Google Scholar

    [68]
    Ruschhaupt A, Dowdall T, Simón M A, and Muga J G 2017 Europhys. Lett. 120 20001 doi: 10.1209/0295-5075/120/20001

    CrossRef Google Scholar

    [69]
    Alexandre J, Millington P, and Seynaeve D 2017 Phys. Rev. D 96 065027 doi: 10.1103/PhysRevD.96.065027

    CrossRef Google Scholar

    [70]
    Rivero J D H and Ge L 2020 Phys. Rev. Lett. 125 083902 doi: 10.1103/PhysRevLett.125.083902

    CrossRef Google Scholar

    [71]
    Ge L, Chong Y D, and Stone A D 2012 Phys. Rev. A 85 023802 doi: 10.1103/PhysRevA.85.023802

    CrossRef Google Scholar

    [72]
    Ahmed Z 2013 Phys. Lett. A 377 957 doi: 10.1016/j.physleta.2013.02.031

    CrossRef Google Scholar

    [73]
    Mostafazadeh A 2014 J. Phys. A 47 505303 doi: 10.1088/1751-8113/47/50/505303

    CrossRef Google Scholar

    [74]
    Jin L 2018 Phys. Rev. A 98 022117 doi: 10.1103/PhysRevA.98.022117

    CrossRef Google Scholar

    [75]
    Jin L and Song Z 2012 Phys. Rev. A 85 012111 doi: 10.1103/PhysRevA.85.012111

    CrossRef Google Scholar

    [76]
    Muga J G, Palao J P, Navarro B, and Egusquiza I L 2004 Phys. Rep. 395 357 doi: 10.1016/j.physrep.2004.03.002

    CrossRef Google Scholar

    [77]
    Cannata F, Dedonder J P, and Ventura A 2007 Ann. Phys. 322 397 doi: 10.1016/j.aop.2006.05.011

    CrossRef Google Scholar

    [78]
    Jones H F 2007 Phys. Rev. D 76 125003 doi: 10.1103/PhysRevD.76.125003

    CrossRef Google Scholar

    [79]
    Znojil M 2008 Phys. Rev. D 78 025026 doi: 10.1103/PhysRevD.78.025026

    CrossRef Google Scholar

    [80]
    Ambichl P, Makris K G, Ge L, Chong Y, Stone A D, and Rotter S 2013 Phys. Rev. X 3 041030 doi: 10.1103/PhysRevX.3.041030

    CrossRef Google Scholar

    [81]
    Schomerus H 2013 Philos. Trans. R. Soc. A 371 20120194 doi: 10.1098/rsta.2012.0194

    CrossRef Google Scholar

    [82]
    Basiri A, Vitebskiy I, and Kottos T 2015 Phys. Rev. A 91 063843 doi: 10.1103/PhysRevA.91.063843

    CrossRef Google Scholar

    [83]
    Ge L, Makris K G, Christodoulides D N, and Feng L 2015 Phys. Rev. A 92 062135 doi: 10.1103/PhysRevA.92.062135

    CrossRef Google Scholar

    [84]
    Jin L, Zhang X Z, Zhang G, and Song Z 2016 Sci. Rep. 6 20976 doi: 10.1038/srep20976

    CrossRef Google Scholar

    [85]
    Aurégan Y and Pagneux V 2017 Phys. Rev. Lett. 118 174301 doi: 10.1103/PhysRevLett.118.174301

    CrossRef Google Scholar

    [86]
    Zhao Z, Guo C, and Fan S 2019 Phys. Rev. A 99 033839 doi: 10.1103/PhysRevA.99.033839

    CrossRef Google Scholar

    [87]
    Droulias S, Katsantonis I, Kafesaki M, Soukoulis C M, and Economou E N 2019 Phys. Rev. Lett. 122 213201 doi: 10.1103/PhysRevLett.122.213201

    CrossRef Google Scholar

    [88]
    Novitsky A, Lyakhov D, Michels D, Pavlov A A, Shalin A S, and Novitsky D V 2020 Phys. Rev. A 101 043834 doi: 10.1103/PhysRevA.101.043834

    CrossRef Google Scholar

    [89]
    Burke P C, Wiersig J, and Haque M 2020 Phys. Rev. A 102 012212 doi: 10.1103/PhysRevA.102.012212

    CrossRef Google Scholar

    [90]
    Ghaemi-Dizicheh H and Schomerus H 2021 Phys. Rev. A 104 023515 doi: 10.1103/PhysRevA.104.023515

    CrossRef Google Scholar

    [91]
    Tzortzakakis A F, Makris K G, Szameit A, and Economou E N 2021 Phys. Rev. Res. 3 013208 doi: 10.1103/PhysRevResearch.3.013208

    CrossRef Google Scholar

    [92]
    Krasnok A, Baranov D, Li H, Miri M A, Monticone F, and Alù A 2019 Adv. Opt. Photon. 11 892 doi: 10.1364/AOP.11.000892

    CrossRef Google Scholar

    [93]
    Simón M A, Buendía A, Kiely A, Mostafazadeh A, and Muga J G 2019 Phys. Rev. A 99 052110 doi: 10.1103/PhysRevA.99.052110

    CrossRef Google Scholar

    [94]
    Ruschhaupt A, Kiely A, Simón M A, and Muga J G 2020 Phys. Rev. A 102 053705 doi: 10.1103/PhysRevA.102.053705

    CrossRef Google Scholar

    [95]
    Schomerus H and Wiersig J 2014 Phys. Rev. A 90 053819 doi: 10.1103/PhysRevA.90.053819

    CrossRef Google Scholar

    [96]
    Fleury R, Sounas D, and Alù A 2015 Nat. Commun. 6 5905 doi: 10.1038/ncomms6905

    CrossRef Google Scholar

    [97]
    Gao H, Xue H, Wang Q, Gu Z, Liu T, Zhu J, and Zhang B 2020 Phys. Rev. B 101 180303R doi: 10.1103/PhysRevB.101.180303

    CrossRef Google Scholar

    [98]
    Gou W, Chen T, Xie D, Xiao T, Deng T S, Gadway B, Yi W, and Yan B 2020 Phys. Rev. Lett. 124 070402 doi: 10.1103/PhysRevLett.124.070402

    CrossRef Google Scholar

    [99]
    Schindler J, Li A, Zheng M C, Ellis F M, and Kottos T 2011 Phys. Rev. A 84 040101R doi: 10.1103/PhysRevA.84.040101

    CrossRef Google Scholar

    [100]
    Cochran Z A, Saxena A, and Joglekar Y N 2021 Phys. Rev. Res. 3 013135 doi: 10.1103/PhysRevResearch.3.013135

    CrossRef Google Scholar

    [101]
    Kawabata K, Shiozaki K, Ueda M, and Sato M 2019 Phys. Rev. X 9 041015 doi: 10.1103/PhysRevX.9.041015

    CrossRef Google Scholar

    [102]
    Zhou H and Lee J Y 2019 Phys. Rev. B 99 235112 doi: 10.1103/PhysRevB.99.235112

    CrossRef Google Scholar

    [103]
    Jin L and Song Z 2021 Chin. Phys. Lett. 38 024202 doi: 10.1088/0256-307X/38/2/024202

    CrossRef Google Scholar

    [104]
    For a rigorous proof, please see Eq. 12 in Ref.[103] and compare the scattering coefficients of the scattering centers H and HT. Notice that the symbols tL, tR, rL and rR in Ref.[103] are snm, smn, smm and snn of the scattering matrix with our current notations for any pair of ports m and n. The fact A^T^{-1}=A^{-1}^TA^T^{-1}=A^{-1}^T is also used in the proof for any square matrix A.

    Google Scholar

    [105]
    From the off-diagonal term of SS, we obtain rL=tRrR/tL. From the diagonal terms of SS, we obtain 1=r_{\scriptscriptstyle{\rm L}}r_{\scriptscriptstyle{\rm L}}^{\ast }+t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }=\left r_{\scriptscriptstyle{\rm R}}^{\ast }r_{\scriptscriptstyle{\rm R}}/t_{\scriptscriptstyle{\rm L}}^{\ast }t_{\scriptscriptstyle{\rm L}}+1\right t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }=t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }/t_{\scriptscriptstyle{\rm L}}^{\ast }t_{\scriptscriptstyle{\rm L}}1=r_{\scriptscriptstyle{\rm L}}r_{\scriptscriptstyle{\rm L}}^{\ast }+t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }=\left r_{\scriptscriptstyle{\rm R}}^{\ast }r_{\scriptscriptstyle{\rm R}}/t_{\scriptscriptstyle{\rm L}}^{\ast }t_{\scriptscriptstyle{\rm L}}+1\right t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }=t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }/t_{\scriptscriptstyle{\rm L}}^{\ast }t_{\scriptscriptstyle{\rm L}}.

    Google Scholar

    [106]
  • Related Articles

    [1]Rui-Peng Wang, Tao-Tao Yu, Muhammad Asif Shakoori, Ming-Jun Han, Yu-Xiao Hu, Ho-Kin Tang, Hai-Peng Li. Phonon Thermal Transport at Interfaces of Graphene/Quasi-Hexagonal Phase Fullerene Heterostructure [J]. Chin. Phys. Lett., 2025, 42(4): 046601. doi: 10.1088/0256-307X/42/4/046601
    [2]Liujun Xu, Jiping Huang. Negative Thermal Transport in Conduction and Advection [J]. Chin. Phys. Lett., 2020, 37(8): 080502. doi: 10.1088/0256-307X/37/8/080502
    [3]XU Yi-Ting, XU Jia-Lin, CUI Qian-Jin, XIE Shi-Yong, LU Yuan-Fu, BO Yong, PENG Qin-Jun, CUI Da-Fu, XU Zu-Yan. High Efficiency Multi-kW Diode-Side-Pumped Nd:YAG Laser with Reduced Thermal Effect [J]. Chin. Phys. Lett., 2010, 27(2): 024201. doi: 10.1088/0256-307X/27/2/024201
    [4]YIN Cong, HUANG Lei, HE Fa-Hong, GONG Ma-Li. Thermal Performance of Laser Diode Array under Constant Convective Heat Transfer Boundary Condition [J]. Chin. Phys. Lett., 2007, 24(7): 1934-1937.
    [5]LI Lan, FU Li-Wei, YANG Rui-Xia, LI Guang-Min, TAO Yi, ZHANG Na, ZHANG Xiao-Song. Thermal Behaviour for InGaAsP/InP Multi-Quantum-Well Superluminescent Diodes [J]. Chin. Phys. Lett., 2005, 22(8): 2130-2132.
    [6]YAO Ai-Yun, HOU Wei, LI Hui-Qing, BI Yong, LIN Xue-Chun, GENG Ai-Cong, KONG Yu-Peng, CUI Da-Fu, XU Zu-Yan. Reducing Thermal Effect in End-Diode-Pumped Laser Crystal by Using a Novel Resonator [J]. Chin. Phys. Lett., 2005, 22(3): 607-610.
    [7]LIN Yi-Qing, LU Ju-Fu, GU Wei-Min. Smooth Transition from Shakura-Sunyaev Disc to Advection-Dominated Accretion Flow [J]. Chin. Phys. Lett., 2003, 20(7): 1179-1182.
    [8]WANG Ding-Xiong, LEI Wei-Hua, XIAO Kan. A Toy Model for Advection Dominated Accretion Flows [J]. Chin. Phys. Lett., 2003, 20(6): 965-968.
    [9]GU Wei-Min, LU Ju-Fu. Radial Shocks in Advection-Dominated Accretion FlowsAround Black Holes [J]. Chin. Phys. Lett., 2001, 18(1): 148-150.
    [10]YUAN Feng, HUANG Ke-liang. Locations of Sonic Points in Advection Dominated Accretion Flows Around Black Holes [J]. Chin. Phys. Lett., 1999, 16(4): 310-312.
  • Other Related Supplements

  • Cited by

    Periodical cited type(11)

    1. Lei, M., Jin, P., Zhou, Y. et al. Reconfigurable, zero-energy, and wide-temperature loss-assisted thermal nonreciprocal metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(44): e2410041121. DOI:10.1073/pnas.2410041121
    2. Qiu, Y., Yang, F., Huang, J. et al. Giant and robust thermal nonreciprocity in a fluid-solid multiphase circulator. Physics of Fluids, 2024, 36(10): 103632. DOI:10.1063/5.0233551
    3. Ju, R., Cao, P.-C., Wang, D. et al. Nonreciprocal Heat Circulation Metadevices. Advanced Materials, 2024, 36(3): 2309835. DOI:10.1002/adma.202309835
    4. Yang, F., Zhang, Z., Xu, L. et al. Controlling mass and energy diffusion with metamaterials. Reviews of Modern Physics, 2024, 96(1): 015002. DOI:10.1103/RevModPhys.96.015002
    5. Liu, Z., Huang, J. Topological Plasma Transport from a Diffusion View. Chinese Physics Letters, 2023, 40(11): 110305. DOI:10.1088/0256-307X/40/11/110305
    6. Lou, Q., Xia, M.-G. Autonomously Tuning Multilayer Thermal Cloak with Variable Thermal Conductivity Based on Thermal Triggered Dual Phase-Transition Metamaterial. Chinese Physics Letters, 2023, 40(9): 094401. DOI:10.1088/0256-307X/40/9/094401
    7. Ju, R., Xu, G., Xu, L. et al. Convective Thermal Metamaterials: Exploring High-Efficiency, Directional, and Wave-Like Heat Transfer. Advanced Materials, 2023, 35(23): 2209123. DOI:10.1002/adma.202209123
    8. Chen, Z.-H., Wang, F.-Y., Chen, H. et al. Modulation of Steady-State Heat Transport in a Dissipative Multi-Mode Qubit-Photon System. Chinese Physics Letters, 2023, 40(5): 050501. DOI:10.1088/0256-307X/40/5/050501
    9. Qi, M., Wang, D., Cao, P.-C. et al. Geometric Phase and Localized Heat Diffusion. Advanced Materials, 2022, 34(32): 2202241. DOI:10.1002/adma.202202241
    10. Zhang, J., Zhang, H.-C., Huang, Z.-L. et al. Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film. Chinese Physics B, 2022, 31(1): 014402. DOI:10.1088/1674-1056/ac2809
    11. Cao, P.-C., Li, Y., Peng, Y.-G. et al. Diffusive skin effect and topological heat funneling. Communications Physics, 2021, 4(1): 230. DOI:10.1038/s42005-021-00731-z

    Other cited types(0)

Catalog

    Article views (526) PDF downloads (857) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return