Express Letter
Unitary Scattering Protected by Pseudo-Hermiticity
-
Abstract
Hermitian systems possess unitary scattering. However, the Hermiticity is unnecessary for a unitary scattering although the scattering under the influence of non-Hermiticity is mostly non-unitary. Here we prove that the unitary scattering is protected by certain type of pseudo-Hermiticity and unaffected by the degree of non-Hermiticity. The energy conservation is violated in the scattering process and recovers after scattering. The subsystem of the pseudo-Hermitian scattering center including only the connection sites is Hermitian. These findings provide fundamental insights on the unitary scattering, pseudo-Hermiticity, and energy conservation, and are promising for light propagation, mesoscopic electron transport, and quantum interference in non-Hermitian systems. -
-
References
[1] . [J]. 中国物理快报, 2019, 36(2): 27301-.[1] Mostafazadeh A 2002 J. Math. Phys. 43 205 doi: 10.1063/1.1418246[2] . [J]. 中国物理快报, 2017, 34(9): 97303-.[2] Jones H F 2005 J. Phys. A 38 1741 doi: 10.1088/0305-4470/38/8/010[3] GAO Hai-Xia**;HU Rong;YANG Yin-Tang. The Theoretical Investigation and Analysis of High-Performance ZnO Double-Gate Double-Layer Insulator Thin-Film Transistors[J]. 中国物理快报, 2012, 29(1): 17305-017305.[3] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 doi: 10.1103/PhysRevLett.80.5243[4] ZHOU Yan-Wen**;WU Fa-Yu;ZHENG Chun-Yan . Behaviour of Charge Carriers in As-Deposited and Annealed Undoped TCO Films[J]. 中国物理快报, 2011, 28(10): 107307-107307.[4] Dorey P, Dunning C, and Tateo R 2001 J. Phys. A 34 5679 doi: 10.1088/0305-4470/34/28/305[5] LI Jin-Liang;LI Yu-Xian. Spin Current Through Triple Quantum Dot in the Presence of Rashba Spin-Orbit Interaction[J]. 中国物理快报, 2010, 27(5): 57202-057202.[5] Ruschhaupt A, Delgado F, and Muga J G 2005 J. Phys. A 38 L171 doi: 10.1088/0305-4470/38/9/L03[6] ZHOU Yi(周毅);;HONG Ming-Hui(洪明辉);∗∗;FUHYing-Hsi Jerry(傅盈西);LU Li(吕力);\\TAN Leng Seow(陈凌霄); Luk\`yanchuk B S. Light Irradiation through Small Particles and Its Applications for Surface Nanostructuring in Near Field[J]. 中国物理快报, 2007, 24(10): 2947-2950.[6] Jin L and Song Z 2009 Phys. Rev. A 80 052107 doi: 10.1103/PhysRevA.80.052107[7] Joglekar Y N and Saxena A 2011 Phys. Rev. A 83 050101R doi: 10.1103/PhysRevA.83.050101[7] ZHANG Yong-Mei;XIONG Shi-Jie. Evolution of Spin and Charge in a System with Interacting Impurity and Conducting Electrons[J]. 中国物理快报, 2003, 20(11): 2023-2026.[8] Suchkov S V, Fotsa-Ngaffo F, Kenfack-Jiotsa A, Tikeng A D, Kofane T C, Kivshar Y S, and Sukhorukov A A 2016 New J. Phys. 18 065005 doi: 10.1088/1367-2630/18/6/065005[8] ZHENG Yi-Song;LÜTian-Quan;ZHANG Cheng-Xiang;SU Wen-Hui. Interface Roughness Scattering on Electronic Transport in a Quantum Well[J]. 中国物理快报, 2003, 20(10): 1844-1847.[9] Chen P and Chong Y D 2017 Phys. Rev. A 95 062113 doi: 10.1103/PhysRevA.95.062113[9] XIONG Yong-Jian;XIONG Shi-Jie. Transient Process of Transport Through a Quantum Dot in a Stepped Bias: a Numerical Approach[J]. 中国物理快报, 2001, 18(12): 1638-1640.[10] Luo L, Luo J, Chu H, and Lai Y 2021 Adv. Photon. Res. 2 2000081 doi: 10.1002/adpr.202000081[11] Duan L, Wang Y Z, and Chen Q H 2020 Chin. Phys. Lett. 37 081101 doi: 10.1088/0256-307X/37/8/081101[12] Lei S, Bai D, Ren Z, and Lyu M 2021 Chin. Phys. Lett. 38 051101 doi: 10.1088/0256-307X/38/5/051101[13] Song Q, Dai S, Han D, Zhang Z Q, Chan C T, and Zi J 2021 Chin. Phys. Lett. 38 084203 doi: 10.1088/0256-307X/38/8/084203[14] El-Ganainy R, Makris K G, Christodoulides D N, and Musslimani Z H 2007 Opt. Lett. 32 2632 doi: 10.1364/OL.32.002632[15] Makris K G, El-Ganainy R, Christodoulides D N, and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904 doi: 10.1103/PhysRevLett.100.103904[16] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, and Kip D 2010 Nat. Phys. 6 192 doi: 10.1038/nphys1515[17] Mostafazadeh A and Batal A 2004 J. Phys. A 37 11645 doi: 10.1088/0305-4470/37/48/009[18] Brody D C 2014 J. Phys. A 47 035305 doi: 10.1088/1751-8113/47/3/035305[19] Jin L and Song Z 2011 Phys. Rev. A 84 042116 doi: 10.1103/PhysRevA.84.042116[20] Kottos T 2010 Nat. Phys. 6 166 doi: 10.1038/nphys1612[21] Zheng M C, Christodoulides D N, Fleischmann R, and Kottos T 2010 Phys. Rev. A 82 010103R doi: 10.1103/PhysRevA.82.010103[22] Wang P, Jin L, Zhang G, and Song Z 2016 Phys. Rev. A 94 053834 doi: 10.1103/PhysRevA.94.053834[23] Ge L 2018 Photon. Res. 6 A10 doi: 10.1364/PRJ.6.000A10[24] Xiao L, Wang K, Zhan X, Bian Z, Kawabata K, Ueda M, Yi W, and Xue P 2019 Phys. Rev. Lett. 123 230401 doi: 10.1103/PhysRevLett.123.230401[25] Peng B, Özdemir S K, Lei F, Gianfreda F M M, Long G L, Fan S, Nori F, Bender C M, and Yang L 2014 Nat. Phys. 10 394 doi: 10.1038/nphys2927[26] Ding K, Ma G, Xiao M, Zhang Z Q, and Chan C T 2016 Phys. Rev. X 6 021007 doi: 10.1103/PhysRevX.6.021007[27] Bian Z, Xiao L, Wang K, Zhan X, Onanga F A, Ruzicka F, Yi W, Joglekar Y N, and Xue P 2020 Phys. Rev. Res. 2 022039R doi: 10.1103/PhysRevResearch.2.022039[28] Liu W, Wu Y, Duan C K, Rong X, and Du J 2021 Phys. Rev. Lett. 126 170506 doi: 10.1103/PhysRevLett.126.170506[29] Ashida Y, Gong Z, and Ueda M 2020 Adv. Phys. 69 249 doi: 10.1080/00018732.2021.1876991[30] Moiseyev N 2011 Non-Hermitian Quantum Mechanics Cambridge: Cambridge University Press[31] Konotop V V, Yang J, and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002 doi: 10.1103/RevModPhys.88.035002[32] Suchkov S V, Sukhorukov A A, Huang J, Dmitriev S V, Lee C, and Kivshar Y S 2016 Laser & Photon. Rev. 10 177 doi: 10.1002/lpor.201500227[33] Feng L, El-Ganainy R, and Ge L 2017 Nat. Photon. 11 752 doi: 10.1038/s41566-017-0031-1[34] Longhi S 2017 Europhys. Lett. 120 64001 doi: 10.1209/0295-5075/120/64001[35] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, and Christodoulides D N 2018 Nat. Phys. 14 11 doi: 10.1038/nphys4323[36] Miri M A and Alù A 2019 Science 363 eaar7709 doi: 10.1126/science.aar7709[37] Özdemir S K, Rotter S, Nori F, and Yang L 2019 Nat. Mater. 18 783 doi: 10.1038/s41563-019-0304-9[38] Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P, and Chen Y F 2019 Adv. Mater. 32 1903639 doi: 10.1002/adma.201903639[39] Wiersig J 2014 Phys. Rev. Lett. 112 203901 doi: 10.1103/PhysRevLett.112.203901[40] Chen W, Ozdemir S K, Zhao G, Wiersig J, and Yang L 2017 Nature 548 192 doi: 10.1038/nature23281[41] Lau H K and Clerk A A 2018 Nat. Commun. 9 4320 doi: 10.1038/s41467-018-06477-7[42] Hokmabadi M P, Schumer A, Christodoulides D N, and Khajavikhan M 2019 Nature 576 70 doi: 10.1038/s41586-019-1780-4[43] Chu Y, Liu Y, Liu H, and Cai J 2020 Phys. Rev. Lett. 124 020501 doi: 10.1103/PhysRevLett.124.020501[44] Xu H, Mason D, Jiang L, and Harris J G E 2016 Nature 537 80 doi: 10.1038/nature18604[45] Assawaworrarit S, Yu X, and Fan S 2017 Nature 546 387 doi: 10.1038/nature22404[46] Hodaei H, Miri M A, Heinrich M, Christodoulides D N, and Khajavikhan M 2014 Science 346 975 doi: 10.1126/science.1258480[47] Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D, and Khajavikhan M 2018 Science 359 eaar4005 doi: 10.1126/science.aar4005[48] Chong Y D, Ge L, Cao H, and Stone A D 2010 Phys. Rev. Lett. 105 053901 doi: 10.1103/PhysRevLett.105.053901[49] Longhi S 2010 Phys. Rev. A 82 031801R doi: 10.1103/PhysRevA.82.031801[50] Wan W, Chong Y, Ge L, Noh H, Stone A D, and Cao H 2011 Science 331 889 doi: 10.1126/science.1200735[51] Sun Y, Tan W, Li H Q, Li J, and Chen H 2014 Phys. Rev. Lett. 112 143903 doi: 10.1103/PhysRevLett.112.143903[52] Li H, Suwunnarat S, Fleischmann R, Schanz H, and Kottos T 2017 Phys. Rev. Lett. 118 044101 doi: 10.1103/PhysRevLett.118.044101[53] Jeffers J 2019 Phys. Rev. Lett. 123 143602 doi: 10.1103/PhysRevLett.123.143602[54] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901 doi: 10.1103/PhysRevLett.106.213901[55] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, and Peschel U 2012 Nature 488 167 doi: 10.1038/nature11298[56] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, and Scherer A 2013 Nat. Mater. 12 108 doi: 10.1038/nmat3495[57] Zhu X, Ramezani H, Shi C, Zhu J, and Zhang X 2014 Phys. Rev. X 4 031042 doi: 10.1103/PhysRevX.4.031042[58] Wu J H, Artoni M, Rocca G C L, and Degeneracies N H 2014 Phys. Rev. Lett. 113 123004 doi: 10.1103/PhysRevLett.113.123004[59] Sounas D L, Fleury R, and Alù A 2015 Phys. Rev. Appl. 4 014005 doi: 10.1103/PhysRevApplied.4.014005[60] Makris K G, Kresic I, Brandstötter A, and Rotter S 2020 Optica 7 619 doi: 10.1364/OPTICA.390788[61] Longhi S 2015 Opt. Lett. 40 1278 doi: 10.1364/OL.40.001278[62] Sweeney W R, Hsu C W, Rotter S, and Stone A D 2019 Phys. Rev. Lett. 122 093901 doi: 10.1103/PhysRevLett.122.093901[63] Li C, Jin L, and Song Z 2017 Phys. Rev. A 95 022125 doi: 10.1103/PhysRevA.95.022125[64] Koutserimpas T T and Fleury R 2018 Phys. Rev. Lett. 120 087401 doi: 10.1103/PhysRevLett.120.087401[65] Mostafazadeh A 2009 Phys. Rev. Lett. 102 220402 doi: 10.1103/PhysRevLett.102.220402[66] Ramezani H, Li H K, Wang Y, and Zhang X 2014 Phys. Rev. Lett. 113 263905 doi: 10.1103/PhysRevLett.113.263905[67] Jin L and Song Z 2018 Phys. Rev. Lett. 121 073901 doi: 10.1103/PhysRevLett.121.073901[68] Ruschhaupt A, Dowdall T, Simón M A, and Muga J G 2017 Europhys. Lett. 120 20001 doi: 10.1209/0295-5075/120/20001[69] Alexandre J, Millington P, and Seynaeve D 2017 Phys. Rev. D 96 065027 doi: 10.1103/PhysRevD.96.065027[70] Rivero J D H and Ge L 2020 Phys. Rev. Lett. 125 083902 doi: 10.1103/PhysRevLett.125.083902[71] Ge L, Chong Y D, and Stone A D 2012 Phys. Rev. A 85 023802 doi: 10.1103/PhysRevA.85.023802[72] Ahmed Z 2013 Phys. Lett. A 377 957 doi: 10.1016/j.physleta.2013.02.031[73] Mostafazadeh A 2014 J. Phys. A 47 505303 doi: 10.1088/1751-8113/47/50/505303[74] Jin L 2018 Phys. Rev. A 98 022117 doi: 10.1103/PhysRevA.98.022117[75] Jin L and Song Z 2012 Phys. Rev. A 85 012111 doi: 10.1103/PhysRevA.85.012111[76] Muga J G, Palao J P, Navarro B, and Egusquiza I L 2004 Phys. Rep. 395 357 doi: 10.1016/j.physrep.2004.03.002[77] Cannata F, Dedonder J P, and Ventura A 2007 Ann. Phys. 322 397 doi: 10.1016/j.aop.2006.05.011[78] Jones H F 2007 Phys. Rev. D 76 125003 doi: 10.1103/PhysRevD.76.125003[79] Znojil M 2008 Phys. Rev. D 78 025026 doi: 10.1103/PhysRevD.78.025026[80] Ambichl P, Makris K G, Ge L, Chong Y, Stone A D, and Rotter S 2013 Phys. Rev. X 3 041030 doi: 10.1103/PhysRevX.3.041030[81] Schomerus H 2013 Philos. Trans. R. Soc. A 371 20120194 doi: 10.1098/rsta.2012.0194[82] Basiri A, Vitebskiy I, and Kottos T 2015 Phys. Rev. A 91 063843 doi: 10.1103/PhysRevA.91.063843[83] Ge L, Makris K G, Christodoulides D N, and Feng L 2015 Phys. Rev. A 92 062135 doi: 10.1103/PhysRevA.92.062135[84] Jin L, Zhang X Z, Zhang G, and Song Z 2016 Sci. Rep. 6 20976 doi: 10.1038/srep20976[85] Aurégan Y and Pagneux V 2017 Phys. Rev. Lett. 118 174301 doi: 10.1103/PhysRevLett.118.174301[86] Zhao Z, Guo C, and Fan S 2019 Phys. Rev. A 99 033839 doi: 10.1103/PhysRevA.99.033839[87] Droulias S, Katsantonis I, Kafesaki M, Soukoulis C M, and Economou E N 2019 Phys. Rev. Lett. 122 213201 doi: 10.1103/PhysRevLett.122.213201[88] Novitsky A, Lyakhov D, Michels D, Pavlov A A, Shalin A S, and Novitsky D V 2020 Phys. Rev. A 101 043834 doi: 10.1103/PhysRevA.101.043834[89] Burke P C, Wiersig J, and Haque M 2020 Phys. Rev. A 102 012212 doi: 10.1103/PhysRevA.102.012212[90] Ghaemi-Dizicheh H and Schomerus H 2021 Phys. Rev. A 104 023515 doi: 10.1103/PhysRevA.104.023515[91] Tzortzakakis A F, Makris K G, Szameit A, and Economou E N 2021 Phys. Rev. Res. 3 013208 doi: 10.1103/PhysRevResearch.3.013208[92] Krasnok A, Baranov D, Li H, Miri M A, Monticone F, and Alù A 2019 Adv. Opt. Photon. 11 892 doi: 10.1364/AOP.11.000892[93] Simón M A, Buendía A, Kiely A, Mostafazadeh A, and Muga J G 2019 Phys. Rev. A 99 052110 doi: 10.1103/PhysRevA.99.052110[94] Ruschhaupt A, Kiely A, Simón M A, and Muga J G 2020 Phys. Rev. A 102 053705 doi: 10.1103/PhysRevA.102.053705[95] Schomerus H and Wiersig J 2014 Phys. Rev. A 90 053819 doi: 10.1103/PhysRevA.90.053819[96] Fleury R, Sounas D, and Alù A 2015 Nat. Commun. 6 5905 doi: 10.1038/ncomms6905[97] Gao H, Xue H, Wang Q, Gu Z, Liu T, Zhu J, and Zhang B 2020 Phys. Rev. B 101 180303R doi: 10.1103/PhysRevB.101.180303[98] Gou W, Chen T, Xie D, Xiao T, Deng T S, Gadway B, Yi W, and Yan B 2020 Phys. Rev. Lett. 124 070402 doi: 10.1103/PhysRevLett.124.070402[99] Schindler J, Li A, Zheng M C, Ellis F M, and Kottos T 2011 Phys. Rev. A 84 040101R doi: 10.1103/PhysRevA.84.040101[100] Cochran Z A, Saxena A, and Joglekar Y N 2021 Phys. Rev. Res. 3 013135 doi: 10.1103/PhysRevResearch.3.013135[101] Kawabata K, Shiozaki K, Ueda M, and Sato M 2019 Phys. Rev. X 9 041015 doi: 10.1103/PhysRevX.9.041015[102] Zhou H and Lee J Y 2019 Phys. Rev. B 99 235112 doi: 10.1103/PhysRevB.99.235112[103] Jin L and Song Z 2021 Chin. Phys. Lett. 38 024202 doi: 10.1088/0256-307X/38/2/024202[104] For a rigorous proof, please see Eq. 12 in Ref.[103] and compare the scattering coefficients of the scattering centers H and HT. Notice that the symbols tL, tR, rL and rR in Ref.[103] are snm, smn, smm and snn of the scattering matrix with our current notations for any pair of ports m and n. The fact A^T^{-1}=A^{-1}^TA^T^{-1}=A^{-1}^T is also used in the proof for any square matrix A.[105] From the off-diagonal term of SS†, we obtain rL=−tRr∗R/t∗L. From the diagonal terms of SS†, we obtain 1=r_{\scriptscriptstyle{\rm L}}r_{\scriptscriptstyle{\rm L}}^{\ast }+t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }=\left r_{\scriptscriptstyle{\rm R}}^{\ast }r_{\scriptscriptstyle{\rm R}}/t_{\scriptscriptstyle{\rm L}}^{\ast }t_{\scriptscriptstyle{\rm L}}+1\right t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }=t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }/t_{\scriptscriptstyle{\rm L}}^{\ast }t_{\scriptscriptstyle{\rm L}}1=r_{\scriptscriptstyle{\rm L}}r_{\scriptscriptstyle{\rm L}}^{\ast }+t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }=\left r_{\scriptscriptstyle{\rm R}}^{\ast }r_{\scriptscriptstyle{\rm R}}/t_{\scriptscriptstyle{\rm L}}^{\ast }t_{\scriptscriptstyle{\rm L}}+1\right t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }=t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }/t_{\scriptscriptstyle{\rm L}}^{\ast }t_{\scriptscriptstyle{\rm L}}.[106] [1] -
Related Articles
[1] Rui-Peng Wang, Tao-Tao Yu, Muhammad Asif Shakoori, Ming-Jun Han, Yu-Xiao Hu, Ho-Kin Tang, Hai-Peng Li. Phonon Thermal Transport at Interfaces of Graphene/Quasi-Hexagonal Phase Fullerene Heterostructure [J]. Chin. Phys. Lett., 2025, 42(4): 046601. doi: 10.1088/0256-307X/42/4/046601 [2] Liujun Xu, Jiping Huang. Negative Thermal Transport in Conduction and Advection [J]. Chin. Phys. Lett., 2020, 37(8): 080502. doi: 10.1088/0256-307X/37/8/080502 [3] XU Yi-Ting, XU Jia-Lin, CUI Qian-Jin, XIE Shi-Yong, LU Yuan-Fu, BO Yong, PENG Qin-Jun, CUI Da-Fu, XU Zu-Yan. High Efficiency Multi-kW Diode-Side-Pumped Nd:YAG Laser with Reduced Thermal Effect [J]. Chin. Phys. Lett., 2010, 27(2): 024201. doi: 10.1088/0256-307X/27/2/024201 [4] YIN Cong, HUANG Lei, HE Fa-Hong, GONG Ma-Li. Thermal Performance of Laser Diode Array under Constant Convective Heat Transfer Boundary Condition [J]. Chin. Phys. Lett., 2007, 24(7): 1934-1937. [5] LI Lan, FU Li-Wei, YANG Rui-Xia, LI Guang-Min, TAO Yi, ZHANG Na, ZHANG Xiao-Song. Thermal Behaviour for InGaAsP/InP Multi-Quantum-Well Superluminescent Diodes [J]. Chin. Phys. Lett., 2005, 22(8): 2130-2132. [6] YAO Ai-Yun, HOU Wei, LI Hui-Qing, BI Yong, LIN Xue-Chun, GENG Ai-Cong, KONG Yu-Peng, CUI Da-Fu, XU Zu-Yan. Reducing Thermal Effect in End-Diode-Pumped Laser Crystal by Using a Novel Resonator [J]. Chin. Phys. Lett., 2005, 22(3): 607-610. [7] LIN Yi-Qing, LU Ju-Fu, GU Wei-Min. Smooth Transition from Shakura-Sunyaev Disc to Advection-Dominated Accretion Flow [J]. Chin. Phys. Lett., 2003, 20(7): 1179-1182. [8] WANG Ding-Xiong, LEI Wei-Hua, XIAO Kan. A Toy Model for Advection Dominated Accretion Flows [J]. Chin. Phys. Lett., 2003, 20(6): 965-968. [9] GU Wei-Min, LU Ju-Fu. Radial Shocks in Advection-Dominated Accretion FlowsAround Black Holes [J]. Chin. Phys. Lett., 2001, 18(1): 148-150. [10] YUAN Feng, HUANG Ke-liang. Locations of Sonic Points in Advection Dominated Accretion Flows Around Black Holes [J]. Chin. Phys. Lett., 1999, 16(4): 310-312. -
Supplements
Other Related Supplements
-
Cover image
63KB
-
-
Cited by
Periodical cited type(11)
1. Lei, M., Jin, P., Zhou, Y. et al. Reconfigurable, zero-energy, and wide-temperature loss-assisted thermal nonreciprocal metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(44): e2410041121. DOI:10.1073/pnas.2410041121 2. Qiu, Y., Yang, F., Huang, J. et al. Giant and robust thermal nonreciprocity in a fluid-solid multiphase circulator. Physics of Fluids, 2024, 36(10): 103632. DOI:10.1063/5.0233551 3. Ju, R., Cao, P.-C., Wang, D. et al. Nonreciprocal Heat Circulation Metadevices. Advanced Materials, 2024, 36(3): 2309835. DOI:10.1002/adma.202309835 4. Yang, F., Zhang, Z., Xu, L. et al. Controlling mass and energy diffusion with metamaterials. Reviews of Modern Physics, 2024, 96(1): 015002. DOI:10.1103/RevModPhys.96.015002 5. Liu, Z., Huang, J. Topological Plasma Transport from a Diffusion View. Chinese Physics Letters, 2023, 40(11): 110305. DOI:10.1088/0256-307X/40/11/110305 6. Lou, Q., Xia, M.-G. Autonomously Tuning Multilayer Thermal Cloak with Variable Thermal Conductivity Based on Thermal Triggered Dual Phase-Transition Metamaterial. Chinese Physics Letters, 2023, 40(9): 094401. DOI:10.1088/0256-307X/40/9/094401 7. Ju, R., Xu, G., Xu, L. et al. Convective Thermal Metamaterials: Exploring High-Efficiency, Directional, and Wave-Like Heat Transfer. Advanced Materials, 2023, 35(23): 2209123. DOI:10.1002/adma.202209123 8. Chen, Z.-H., Wang, F.-Y., Chen, H. et al. Modulation of Steady-State Heat Transport in a Dissipative Multi-Mode Qubit-Photon System. Chinese Physics Letters, 2023, 40(5): 050501. DOI:10.1088/0256-307X/40/5/050501 9. Qi, M., Wang, D., Cao, P.-C. et al. Geometric Phase and Localized Heat Diffusion. Advanced Materials, 2022, 34(32): 2202241. DOI:10.1002/adma.202202241 10. Zhang, J., Zhang, H.-C., Huang, Z.-L. et al. Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film. Chinese Physics B, 2022, 31(1): 014402. DOI:10.1088/1674-1056/ac2809 11. Cao, P.-C., Li, Y., Peng, Y.-G. et al. Diffusive skin effect and topological heat funneling. Communications Physics, 2021, 4(1): 230. DOI:10.1038/s42005-021-00731-z Other cited types(0)