[1] | Pauling L 1966 Proc. Natl. Acad. Sci. USA 56 1646 | THE STRUCTURE AND PROPERTIES OF GRAPHITE AND BORON NITRIDE
[2] | Pease R S 1952 Acta Crystallogr. 5 356 | An X-ray study of boron nitride
[3] | Luo K, Yuan X, Zhao Z et al. 2017 J. Appl. Phys. 121 165102 | New hexagonal boron nitride polytypes with triple-layer periodicity
[4] | Zhao X, Huang J, Zhuo Z et al. 2020 Chin. Phys. Lett. 37 044204 | Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure*
[5] | Sato T 1985 Proc. Jpn. Acad. Ser. B 61 459 | Influence of monovalent anions on the formation of rhombohedral boron nitride, rBN.
[6] | Chubarov M, Pedersen H, Högberg H, Jensen J, and Henry A 2012 Cryst. Growth & Des. 12 3215 | Growth of High Quality Epitaxial Rhombohedral Boron Nitride
[7] | Chen C, Yin D, Kato T et al. 2019 Proc. Natl. Acad. Sci. USA 116 11181 | Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects
[8] | Bundy F P and Wentorf R H 1963 J. Chem. Phys. 38 1144 | Direct Transformation of Hexagonal Boron Nitride to Denser Forms
[9] | Wentorf R H 1957 J. Chem. Phys. 26 956 | Cubic Form of Boron Nitride
[10] | Golberg D, Bando Y, Huang Y et al. 2010 ACS Nano 4 2979 | Boron Nitride Nanotubes and Nanosheets
[11] | Zhang S, Li Z, Luo K et al. 2022 Natl. Sci. Rev. 9 nwab140 | Discovery of carbon-based strongest and hardest amorphous material
[12] | Zhang S, Wu Y, Luo K et al. 2021 Cell Rep. Phys. Sci. 2 100575 | Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene
[13] | Lv R, Yang X, Yang D et al. 2021 Chin. Phys. Lett. 38 076101 | Computational Prediction of a Novel Superhard sp 3 Trigonal Carbon Allotrope with Bandgap Larger than Diamond
[14] | He L L, Akaishi M, and Horiuchi S 1998 Microsc. Res. Tech. 40 243 | Structural evolution in boron nitrides during the hexagonal-cubic phase transition under high pressure at high temperature
[15] | Watanabe K, Taniguchi T, and Kanda H 2004 Nat. Mater. 3 404 | Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal
[16] | Taniguchi T, Watanabe K, Koizumi S et al. 2002 Appl. Phys. Lett. 81 4145 | Ultraviolet light emission from self-organized p–n domains in cubic boron nitride bulk single crystals grown under high pressure
[17] | Wentorf R H 1961 J. Chem. Phys. 34 809 | Synthesis of the Cubic Form of Boron Nitride
[18] | Renata M, Wentzcovitch S, F et al. 1988 Phys. Rev. B 38 6191 | Ab initio study of graphite → diamondlike transitions in BN
[19] | Corrigan F R and Bundy F P 1975 J. Chem. Phys. 63 3812 | Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures
[20] | Onodera A, Inoue K, Yoshihara H et al. 1990 J. Mater. Sci. 25 4279 | Synthesis of cubic boron nitride from rhombohedral form under high static pressure
[21] | Wakatsuki M, Ichinose K, and Aoki T 1972 Mater. Res. Bull. 7 999 | Synthesis of polycrystalline cubic BN
[22] | Sato T, Ishii T, and Setaka N 1982 J. Am. Ceram. Soc. 65 162 | Determination of the Parameters of Native Disorder in alpha-Al2O3
[23] | Kurdyumov A, Britun V, and Petrusha I 1996 Diamond Relat. Mater. 5 1229 | Structural mechanisms of rhombohedral BN transformations into diamond-like phases
[24] | Zhang T C, Yu S, Li D M et al. 1998 Chin. Phys. Lett. 15 70 | Wurtzite Boron Nitride Crystal Growth in the Region of Cubic Boron Nitride Crystal Synthesizing
[25] | He L L, Taniguchi T, Sato T et al. 1997 J. Appl. Phys. 82 4241 | Highly irregular stacking structure in r-BN pressed up to 7.7 GPa at room temperature
[26] | Sumiya H, Uesaka S, and Satoh S 2000 J. Mater. Sci. 35 1181 | Mechanical properties of high purity polycrystalline cBN synthesized by direct conversion sintering method
[27] | Sumiya H and Harano K 2012 Diamond Relat. Mater. 24 44 | Distinctive mechanical properties of nano-polycrystalline diamond synthesized by direct conversion sintering under HPHT
[28] | Horiuchi S, He L L, Onoda M et al. 1996 Appl. Phys. Lett. 68 182 | Monoclinic phase of boron nitride appearing during the hexagonal cubic phase transition at high pressure and high temperature
[29] | Bundy F P 1967 J. Chem. Phys. 46 3437 | Hexagonal Diamond—A New Form of Carbon
[30] | Irifune T, Kurio A, Sakamoto S et al. 2004 Phys. Earth Planet. Inter. 143–144 593 | Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature
[31] | Németh P, McColl K, Smith R L et al. 2020 Nano Lett. 20 3611 | Diamond-Graphene Composite Nanostructures
[32] | Németh P, Mccoll K, Garvie L et al. 2020 Nat. Mater. 19 1126 | Complex nanostructures in diamond
[33] | Zhao Z, Luo K, Liu B et al. 2021 A Preprint on Research Square | Coherent interfaces with mixed hybridization govern direct transformation from graphite to diamond
[34] | Ge Y, Luo K, Liu Y et al. 2022 Mater. Today Phys. 23 100630 | Superconductivity in graphite-diamond hybrid
[35] | Luo K, Liu B, Sun L et al. 2021 Chin. Phys. Lett. 38 028102 | Design of a Class of New sp 2 – sp 3 Carbons Constructed by Graphite and Diamond Building Blocks
[36] | Zhao Z, Luo K, Liu B et al. 2019 Patent Application: CN 110330006A (2019-08-05), US 20210039950A1 (2020-03-26), EP 3772486A1 (2020-03-26), JP 2021024774A (2020-04-14) |
| Zhao Z, Luo K, and Tian Y 2019 The 9th International Forum on Advanced Materials (Wuhan, China 24–26 September 2019) pp 78–85 |
[37] | 2012 Materials Studio Program version 7.0 (Accelrys Inc.: San Diego, CA) |
[38] | Clark S J, Segall M D, Pickard C J et al. 2005 Z. Kristallogr. - Cryst. Mater. 220 567 | First principles methods using CASTEP
[39] | Vanderbilt D 1990 Phys. Rev. B 41 7892 | Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
[40] | Laasonen K, Car R, Lee C et al. 1991 Phys. Rev. B 43 6796 | Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics
[41] | Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 | Self-interaction correction to density-functional approximations for many-electron systems
[42] | Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 | Ground State of the Electron Gas by a Stochastic Method
[43] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | Special points for Brillouin-zone integrations
[44] | Gu Q, Xing D, and Sun J 2019 Chin. Phys. Lett. 36 097401 | Superconducting Single-Layer T-Graphene and Novel Synthesis Routes*
[45] | Ma Y M 2019 Chin. Phys. Lett. 36 090101 | Theoretical Proposal for a Planar Single-Layer Carbon That Shows a Potential in Superconductivity
[46] | Hinuma Y, Pizzi G, Kumagai Y et al. 2017 Comput. Mater. Sci. 128 140 | Band structure diagram paths based on crystallography
[47] | Refson K, Tulip P R, and Clark S J 2006 Phys. Rev. B 73 155114 | Variational density-functional perturbation theory for dielectrics and lattice dynamics
[48] | Datchi F, Dewaele A, Le G Y et al. 2007 Phys. Rev. B 75 214104 | Equation of state of cubic boron nitride at high pressures and temperatures
[49] | Zhao Z, Luo K, Sun L et al. 2020 Patent Application: CN 113526475A (2020-04-17), US 20210323822A1 (2020-09-30), EP 3896032A1 (2020-11-09), JP 2021172579A (2020-10-28) |
[50] | Hill R 1952 Proc. Phys. Soc. A 65 349 | The Elastic Behaviour of a Crystalline Aggregate
[51] | Born M and Huang K 1955 Am. J. Phys. 23 474 | Dynamical Theory of Crystal Lattices
[52] | Born M 1940 Proc. Cambridge Philos. Soc. 36 160 | On the stability of crystal lattices. I
[53] | Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104 | Necessary and sufficient elastic stability conditions in various crystal systems
[54] | Chen X Q, Niu H, Li D et al. 2011 Intermetallics 19 1275 | Modeling hardness of polycrystalline materials and bulk metallic glasses
[55] | Tian Y, Xu B, and Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93 | Microscopic theory of hardness and design of novel superhard crystals
[56] | Perdew J P 2009 Int. J. Quantum Chem. 28 497 | Density functional theory and the band gap problem