[1] | Blase X, Bustarret E, Chapelier C, Klein T, and Marcenat C 2009 Nat. Mater. 8 375 | Superconducting group-IV semiconductors
[2] | Gurevich V L, Larkin A I, and Firsov Y A 1962 Sov. Phys. Solid State 4 131 |
[3] | Cohen M L 1964 Phys. Rev. 134 A511 | Superconductivity in Many-Valley Semiconductors and in Semimetals
[4] | Cohen M L 1964 Rev. Mod. Phys. 36 240 | The Existence of a Superconducting State in Semiconductors
[5] | Schooley J F, Hosler W R, and Cohen M L 1964 Phys. Rev. Lett. 12 474 | Superconductivity in Semiconducting SrTi
[6] | Schooley J F, Hosler W R, Ambler E, Becker J H, Cohen M L, and Koonce C S 1965 Phys. Rev. Lett. 14 305 | Dependence of the Superconducting Transition Temperature on Carrier Concentration in Semiconducting SrTi
[7] | Hein R A, Gibson J W, Mazelsky R, Miller R C, and Hulm J K 1964 Phys. Rev. Lett. 12 320 | Superconductivity in Germanium Telluride
[8] | Bustarret E 2015 Physica C 514 36 | Superconductivity in doped semiconductors
[9] | Mao H K, Chen X J, Ding Y, Li B, and Wang L 2018 Rev. Mod. Phys. 90 015007 | Solids, liquids, and gases under high pressure
[10] | Liu Z, Dong Q, Shan P, Wang Y, Dai J, Jana R, Chen K, Sun J, Wang B, Yu X, Liu G, Uwatoko Y, Sui Y, Yang H, Chen G, and Cheng J 2020 Chin. Phys. Lett. 37 047102 | Pressure-Induced Metallization and Structural Phase Transition in the Quasi-One-Dimensional TlFeSe 2
[11] | Hicks C W, Brodsky D O, Yelland E A, Gibbs A S, Bruin J A N, Barber M E, Edkins S D, Nishimura K, Yonezawa S, Maeno Y, Mackenzie A P 2014 Science 344 283 | Strong Increase of Tc of Sr2RuO4 Under Both Tensile and Compressive Strain
[12] | Ahadi K, Galletti L, Li Y, Salmani-Rezaie S, Wu W, and Stemmer S 2019 Sci. Adv. 5 eaaw0120 | Enhancing superconductivity in SrTiO 3 films with strain
[13] | Wu X, Ming F, Smith T S, Liu G, Ye F, Wang K, Johnston S, and Weitering H H 2020 Phys. Rev. Lett. 125 117001 | Superconductivity in a Hole-Doped Mott-Insulating Triangular Adatom Layer on a Silicon Surface
[14] | Uchida M, Nomoto T, Musashi M, Arita R, and Kawasaki M 2020 Phys. Rev. Lett. 125 147001 | Superconductivity in Uniquely Strained Films
[15] | Yuan Y H, Wang X T, Song C L, Wang L L, He K, Ma X C, Yao H, Li W, and Xue Q K 2020 Chin. Phys. Lett. 37 017402 | Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO 3
[16] | Liu C, Song X, Li Q, Ma Y M, and Chen C F 2020 Phys. Rev. Lett. 124 147001 | Superconductivity in Compression-Shear Deformed Diamond
[17] | Chang K J and Cohen M L 1984 Phys. Rev. B 30 5376 | Structural and electronic properties of the high-pressure hexagonal phases of Si
[18] | Olijnyk H, Sikka S K, and Holzapfel W B 1984 Phys. Lett. A 103 137 | Structural phase transitions in Si and Ge under pressures up to 50 GPa
[19] | Hu J Z and Spain I L 1984 Solid State Commun. 51 263 | Phases of silicon at high pressure
[20] | Mignot J M, Chouteau G, and Martinez G 1985 Physica B 135 235 | High pressure superconductivity of silicon
[21] | Chang K J, Dacorogna M M, Cohen M L, Mignot J M, Chouteau G, and Martinez G 1985 Phys. Rev. Lett. 54 2375 | Superconductivity in High-Pressure Metallic Phases of Si
[22] | Bustarret E, Marcenat C, Achatz P, Kacmarcik J, Levy F, Huxley A, Ortega L, Bourgeois E, Blase X, Debarre D, and Boulmer J 2006 Nature 444 465 | Superconductivity in doped cubic silicon
[23] | Ekimov E A, Sidorov V A, Bauer E D, Melnik N N, Curro N J, Thompson J D, and Stishov S M 2004 Nature 428 542 | Superconductivity in diamond
[24] | Takano Y, Nagao M, Sakaguchi I, Tachiki M, Hatano T, Kobayashi K, Umezawa H, and Kawarada H 2004 Appl. Phys. Lett. 85 2851 | Superconductivity in diamond thin films well above liquid helium temperature
[25] | Zhang G, Turner S, Ekimov E A, Vanacken J, Timmermans M, Samuely T, Sidorov V A, Stishov S M, Lu Y, Deloof B, Goderis B, Van Tendeloo G, Van de Vondel J, and Moshchalkov V V 2014 Adv. Mater. 26 2034 | Global and Local Superconductivity in Boron-Doped Granular Diamond
[26] | Ren Z A, Kato J, Muranaka T, Akimitsub J, Kriener M, and Maeno Y 2007 J. Phys. Soc. Jpn. 76 103710 | Superconductivity in Boron-doped SiC
[27] | Kresse G and Furthmüller L 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[28] | Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 | Self-interaction correction to density-functional approximations for many-electron systems
[29] | Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 | Ground State of the Electron Gas by a Stochastic Method
[30] | Giannozzi P et al. 2009 J. Phys.: Condens. Matter 21 395502 | QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
[31] | Boeri L, Kortus J, and Andersen O K 2004 Phys. Rev. Lett. 93 237002 | Three-Dimensional -Type Superconductivity in Hole-Doped Diamond
[32] | Lee K W and Pickett W E 2004 Phys. Rev. Lett. 93 237003 | Superconductivity in Boron-Doped Diamond
[33] | Xiang H J, Li Z Y, Yang J L, Hou J G, and Zhu Q S 2004 Phys. Rev. B 70 212504 | Electron-phonon coupling in a boron-doped diamond superconductor
[34] | Blase X, Adessi C, and Connetable D 2004 Phys. Rev. Lett. 93 237004 | Role of the Dopant in the Superconductivity of Diamond
[35] | Ma Y, Tse J S, Cui T, Klug D D, Zhang L, Xie Y, Niu Y, and Zou G 2005 Phys. Rev. B 72 014306 | First-principles study of electron-phonon coupling in hole- and electron-doped diamonds in the virtual crystal approximation
[36] | Giustino F, Yates J R, Souza I, Cohen M L, and Louie S G 2007 Phys. Rev. Lett. 98 047005 | Electron-Phonon Interaction via Electronic and Lattice Wannier Functions: Superconductivity in Boron-Doped Diamond Reexamined
[37] | Noffsinger J, Giustino F, Louie S G, and Cohen M L 2009 Phys. Rev. B 79 104511 | Origin of superconductivity in boron-doped silicon carbide from first principles
[38] | Heyd J, Scuseria G E, and Ernzerhof M 2003 J. Chem. Phys. 118 8207 | Hybrid functionals based on a screened Coulomb potential
[39] | Heyd J, Scuseria G E, and Ernzerhof M 2006 Erratum: J. Chem. Phys. 124 219906 | Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]
[40] | Bludau W, Onton A, and Heinke W 1974 J. Appl. Phys. 45 1846 | Temperature dependence of the band gap of silicon
[41] | Hunphreys R G, Bimberg D, and Choyke W J 1981 Solid State Commun. 39 163 | Wavelength modulated absorption in SiC
[42] | The Supplemental Material provides further details on computational procedures and parameters, stress-strain relations under various loading conditions for Si and SiC, electronic density of states calculated using the HSE functional to determine the band gap of Si and SiC under various shear strains, structural changes of shear strained Si, relation between the flattening of the stress curve and phonon frequency softening for Si and electronic band structures at selected shear strains for Si and SiC. |
[43] | Eliashberg G M 1960 Sov. Phys.-JETP 11 696 |
[44] | Scalapino D J, Schrieffer J R, and Wilkins J W 1966 Phys. Rev. 148 263 | Strong-Coupling Superconductivity. I
[45] | McMillan W L 1968 Phys. Rev. 167 331 | Transition Temperature of Strong-Coupled Superconductors
[46] | Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 | Transition temperature of strong-coupled superconductors reanalyzed
[47] | Morel P and Anderson P W 1962 Phys. Rev. 125 1263 | Calculation of the Superconducting State Parameters with Retarded Electron-Phonon Interaction
[48] | McMillan W L and Rowell J M 1969 Superconductivity edited by Parks R D (New York: Marcel Dekker) vol 1 p 561 |
[49] | Carbotte J P 1990 Rev. Mod. Phys. 62 1027 | Properties of boson-exchange superconductors
[50] | Carbotte J P and Marsiglio F 2003 Electron-Phonon Superconductivity in The Physics of Superconductors edited by Bennemann K H and Ketterson J B (Berlin: Heidelberg) |
[51] | Sanna A, Flores-Livas J A, Davydov A, Profeta G, Dewhurst K, Sharma1 S and Gross E K U 2018 J. Phys. Soc. Jpn. 87 041012 | Ab initio Eliashberg Theory: Making Genuine Predictions of Superconducting Features
[52] | Liu C, Song X, Li Q, Ma Y M, and Chen C F 2019 Phys. Rev. Lett. 123 195504 | Smooth Flow in Diamond: Atomistic Ductility and Electronic Conductivity
[53] | Shen G, Ikuta D, Sinogeikin S, Li Q, Zhang Y, and Chen C F 2012 Phys. Rev. Lett. 109 205503 | Direct Observation of a Pressure-Induced Precursor Lattice in Silicon
[54] | Zarkevich N A, Chen H, Levitas V I, and Johnson D D 2018 Phys. Rev. Lett. 121 165701 | Lattice Instability during Solid-Solid Structural Transformations under a General Applied Stress Tensor: Example of with Metallization
[55] | Zhang Y, Sun H, and Chen C F 2005 Phys. Rev. Lett. 94 145505 | Atomistic Deformation Modes in Strong Covalent Solids
[56] | Zhang Y, Sun H, and Chen C F 2006 Phys. Rev. B 73 144115 | Structural deformation, strength, and instability of cubic BN compared to diamond: A first-principles study
[57] | Zhang Y, Sun H, and Chen C F 2006 Phys. Rev. B 73 064109 | Strain dependent bonding in solid : High elastic moduli but low strength
[58] | Li B, Sun H, and Chen C F 2014 Nat. Commun. 5 4965 | Large indentation strain-stiffening in nanotwinned cubic boron nitride
[59] | Li B, Sun H, and Chen C F 2016 Phys. Rev. Lett. 117 116103 | Extreme Mechanics of Probing the Ultimate Strength of Nanotwinned Diamond
[60] | Chen X, Zhan X H, Wang X J, Deng J, Liu X B, Chen X, Guo J G, and Chen X L 2021 Chin. Phys. Lett. 38 057402 | Highly Robust Reentrant Superconductivity in CsV 3 Sb 5 under Pressure
[61] | Gu Q Y, Xing D Y, and Sun J 2019 Chin. Phys. Lett. 36 097401 | Superconducting Single-Layer T-Graphene and Novel Synthesis Routes
[62] | Zhang X, Luo T C, Hu X Y, Guo J, Lin G C, Li Y H, Liu Y Z, Li X K, Ge J, Xing Y, Zhu Z W, Gao P, Sun L L, and Wang J 2019 Chin. Phys. Lett. 36 057402 | Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe 2
[63] | Zhang H, Tersoff J, Chen S X H, Zhang Q, Zhang K, Yang Y, Lee C S, Tu K N, Li J, and Lu Y 2016 Sci. Adv. 2 e1501382 | Approaching the ideal elastic strain limit in silicon nanowires
[64] | Banerjee A, Bernoulli D, Yuen H Z M F, Liu J, Dong J, Ding F, Lu J, Dao M, Zhang W, Lu Y, and Suresh S 2018 Science 360 300 | Ultralarge elastic deformation of nanoscale diamond
[65] | Nie A, Bu Y, Li P, Zhang Y, Jin T, Liu J, Su Z, Wang Y, He J, Liu Z, Wang H, Tian Y, and Yang W 2019 Nat. Commun. 10 5533 | Approaching diamond’s theoretical elasticity and strength limits
[66] | Chen M, Pethö L, Sologubenko A S, Ma H, Michler J, Spolenak R, and Wheeler J M 2020 Nat. Commun. 11 2681 | Achieving micron-scale plasticity and theoretical strength in Silicon
[67] | Shi Z, Dao M, Tsymbalov E, Shapeev A, Li J, and Suresh S 2020 Proc. Natl. Acad. Sci. USA 117 24634 | Metallization of diamond
[68] | Dang C, Chou J, Dai B, Chou C, Yang Y, Fan R, Lin W, Meng F, Hu A, Zhu J, Han J, Minor A M, Li J, and Lu Y 2021 Science 371 76 | Achieving large uniform tensile elasticity in microfabricated diamond
[69] | Luo W, Boselli M, Poumirol J, Ardizzone I, Teyssier J, van der Marel D, Gariglio S, Triscone J, and Kuzmenko A B 2019 Nat. Commun. 10 2774 | High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces
[70] | Jiang S, Xie H, Shan J, and Mak K F 2020 Nat. Mater. 19 1295 | Exchange magnetostriction in two-dimensional antiferromagnets
[71] | Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, and Mak K F 2020 Nature 579 353 | Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices
[72] | Ashcroft N W 1968 Phys. Rev. Lett. 21 1748 | Metallic Hydrogen: A High-Temperature Superconductor?
[73] | McMahon J M and Ceperley D M 2011 Phys. Rev. B 84 144515 | High-temperature superconductivity in atomic metallic hydrogen
[74] | Sun Y, Lv J, Xie Y, Liu H, and Ma Y M 2019 Phys. Rev. Lett. 123 097001 | Route to a Superconducting Phase above Room Temperature in Electron-Doped Hydride Compounds under High Pressure
[75] | Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, and Eremets M I 2019 Nature 569 528 | Superconductivity at 250 K in lanthanum hydride under high pressures
[76] | Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, and Hemley R J 2019 Phys. Rev. Lett. 122 027001 | Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures
[77] | Hong F, Yang L X, Shan P F, Yang P T, Liu Z Y, Sun J P, Yin Y Y, Yu X H, Cheng J G, and Zhao Z X 2020 Chin. Phys. Lett. 37 107401 | Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures
[78] | Sun D, Minkov V S, Mozaffari S, Chariton S, Prakapenka V B, Eremets M I, Balicas L, and Balakirev F F 2020 arXiv:2010.00160 [cond-mat.supr-con] | High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride
[79] | Gao Y, Ma Y Z, An Q, Levitas V, Zhang Y, Feng B, Chaudhuri J, and Goddard W A 2019 Carbon 146 364 | Shear driven formation of nano-diamonds at sub-gigapascals and 300 K
[80] | Dong J, Yao Z, Yao M, Li R, Hu K, Zhu L, Wang Y, Sun H, Sundqvist B, Yang K, and Liu B 2020 Phys. Rev. Lett. 124 065701 | Decompression-Induced Diamond Formation from Graphite Sheared under Pressure