[1] | Rudner M S and Lindner N H 2020 Nat. Rev. Phys. 2 229 | Band structure engineering and non-equilibrium dynamics in Floquet topological insulators
[2] | Eckardt A 2017 Rev. Mod. Phys. 89 011004 | Colloquium: Atomic quantum gases in periodically driven optical lattices
[3] | Bukov M, D'Alessio L, and Polkovnikov A 2015 Adv. Phys. 64 139 | Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering
[4] | Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, and Szameit A 2013 Nature 496 196 | Photonic Floquet topological insulators
[5] | Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O'Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H, and Martinis J 2017 Nat. Phys. 13 146 | Chiral ground-state currents of interacting photons in a synthetic magnetic field
[6] | Lignier H, Sias C, Ciampini D, Singh Y, Zenesini A, Morsch O, and Arimondo E 2007 Phys. Rev. Lett. 99 220403 | Dynamical Control of Matter-Wave Tunneling in Periodic Potentials
[7] | Zenesini A, Lignier H, Ciampini D, Morsch O, and Arimondo E 2009 Phys. Rev. Lett. 102 100403 | Coherent Control of Dressed Matter Waves
[8] | Struck J, lschlger C, Le Targat R, Soltan-Panahi P, Eckardt A, Lewenstein M, Windpassinger P, and Sengstock K 2011 Science 333 996 | Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices
[9] | Grg F, Messer M, Sandholzer K, Jotzu G, Desbuquois R, and Esslinger T 2018 Nature 553 481 | Enhancement and sign change of magnetic correlations in a driven quantum many-body system
[10] | Struck J, Weinberg M, lschlger C, Windpassinger P, Simonet J, Sengstock K, Hppner R, Hauke P, Eckardt A, Lewenstein M, and Mathey L 2013 Nat. Phys. 9 738 | Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields
[11] | Cooper N R, Dalibard J, and Spielman I B 2019 Rev. Mod. Phys. 91 015005 | Topological bands for ultracold atoms
[12] | Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, and Bloch I 2013 Phys. Rev. Lett. 111 185301 | Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices
[13] | Miyake H, Siviloglou G A, Kennedy C J, Burton W C, and Ketterle W 2013 Phys. Rev. Lett. 111 185302 | Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices
[14] | Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, and Esslinger T 2014 Nature 515 237 | Experimental realization of the topological Haldane model with ultracold fermions
[15] | Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, and Ye J 2016 Phys. Rev. D 94 124043 | Gravitational wave detection with optical lattice atomic clocks
[16] | Norcia M A, Cline J R K, and Thompson J K 2017 Phys. Rev. A 96 042118 | Role of atoms in atomic gravitational-wave detectors
[17] | Katori H, Takamoto M, Pal'chikov V G, and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005 | Ultrastable Optical Clock with Neutral Atoms in an Engineered Light Shift Trap
[18] | Cirac J I and Zoller P 2012 Nat. Phys. 8 264 | Goals and opportunities in quantum simulation
[19] | Bloch I, Dalibard J, and Nascimbène S 2012 Nat. Phys. 8 267 | Quantum simulations with ultracold quantum gases
[20] | Gross C and Bloch I 2017 Science 357 995 | Quantum simulations with ultracold atoms in optical lattices
[21] | Pezzè L, Smerzi A, Oberthaler M K, Schmied R, and Treutlein P 2018 Rev. Mod. Phys. 90 035005 | Quantum metrology with nonclassical states of atomic ensembles
[22] | McGrew W F, Zhang X, Fasano R J, Schffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, and Ludlow A D 2018 Nature 564 87 | Atomic clock performance enabling geodesy below the centimetre level
[23] | Zhang R, Cheng Y, Zhang P, and Zhai H 2020 Nat. Rev. Phys. 2 213 | Controlling the interaction of ultracold alkaline-earth atoms
[24] | Kolkowitz S, Bromley S L, Bothwell T et al. 2017 Nature 542 66 | Spin–orbit-coupled fermions in an optical lattice clock
[25] | Sillanpaa M, Lehtinen T, Paila A, Makhlin Y, and Hakonen P 2006 Phys. Rev. Lett. 96 187002 | Continuous-Time Monitoring of Landau-Zener Interference in a Cooper-Pair Box
[26] | Shevchenko S N, Ashhab S, and Nori F 2010 Phys. Rep. 492 1 | Landau–Zener–Stückelberg interferometry
[27] | Pezzè L and Smerzi A 2014 Quantum Theory of Phase Estimation, Atom Interferometry, Proceedings of the International School of Physics “Enrico Fermi”, Course 188, edited by Tino G M and Kasevich M A Varenna, (Amsterdam: IOS Press) pp 691–741 |
[28] | Giovannetti V, Lloyd S, and Maccone L 2011 Nat. Photon. 5 222 | Advances in quantum metrology
[29] | Takamoto M and Katori H 2003 Phys. Rev. Lett. 91 223001 | Spectroscopy of the Clock Transition of in an Optical Lattice
[30] | Takamoto M, Hong F L, Higashi R, and Katori H 2005 Nature 435 321 | An optical lattice clock
[31] | See the Supplemental Material for more details about experimental process, theoretical model, spectroscopy calculation, extraction of experiment parameters and Fisher information. |
[32] | Mandel O, Greiner M, Widera A, Rom T, Hansch T W, and Bloch I 2003 Phys. Rev. Lett. 91 010407 | Coherent Transport of Neutral Atoms in Spin-Dependent Optical Lattice Potentials
[33] | Dai H N, Yang B, Reingruber A, Xu X F, Jiang X, Chen Y A, Yuan Z S, Pan J W 2016 Nat. Phys. 12 783 | Generation and detection of atomic spin entanglement in optical lattices
[34] | Wang Y B, Lu X T, Lu B Q, Kong D H, and Chang H 2018 Appl. Sci. 8 2194 | Recent Advances Concerning the 87Sr Optical Lattice Clock at the National Time Service Center
[35] | Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M, and Ye J 2009 Phys. Rev. A 80 052703 | Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock
[36] | Rihele F 2004 Frequency Standards: Basics and Applications (Berlin: Wiley-VCH) chap 3 p 60 | Frequency Standards
[37] | Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G, and Wineland D J 1993 Phys. Rev. A 47 3554 | Quantum projection noise: Population fluctuations in two-level systems
[38] | Chin C, Grimm R, Julienne P, and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 | Feshbach resonances in ultracold gases
[39] | Pezzè L and Smerzi A 2009 Phys. Rev. Lett. 102 100401 | Entanglement, Nonlinear Dynamics, and the Heisenberg Limit
[40] | Pezzè L, Li Y, Li W D, and Smerzi A 2016 Proc. Natl. Acad. Sci. USA 113 11459 | Witnessing entanglement without entanglement witness operators